Karthik, R. and Harsh, H. and Pavan Kumar, Y.V. and John Pradeep, D. and Pradeep Reddy, C. and Kannan, R. (2022) Modelling of Neural Network-based MPPT Controller for Wind Turbine Energy System. Lecture Notes in Electrical Engineering, 822. pp. 429-439.
Full text not available from this repository.Abstract
Wind energy is one of the best renewable energy sources, used for energy generation in modern-day power generation system. Nowadays, wind energy is widely used to power up devices that consume huge power. As wind speed changes rapidly over time, its power generating capacity also varies, this gives rise to a need for a controller which controls the power harnessed from the wind energy system. The procedure to achieve maximum power from a renewable energy system is known as maximum power point tracking (MPPT). There are many methods to achieve maximum power from the wind turbine, and in this paper, a neural network-based controller for MPPT is proposed. Firstly, the mathematical model of a wind power turbine system is presented, followed by designing a neural network-based controller to achieve maximum power profile. The influence of the proposed controller on power point tracking is investigated, and the time domain parameters are presented. In this paper, MATLAB/Simulink software is used for the simulating the system and to verify the controller efficacy. © 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
Item Type: | Article |
---|---|
Impact Factor: | cited By 0 |
Uncontrolled Keywords: | Controllers; MATLAB; Power control; Wind; Wind power; Wind turbines, Energy generations; Energy systems; Maximum power; Maximum Power Point Tracking; Network-based; Network-based controllers; Neural-networks; Power; Renewable energy source; Tracking controller, Maximum power point trackers |
Depositing User: | Mr Ahmad Suhairi Mohamed Lazim |
Date Deposited: | 12 Sep 2022 08:19 |
Last Modified: | 12 Sep 2022 08:19 |
URI: | http://scholars.utp.edu.my/id/eprint/33772 |