Elashmawy, A.M.A. and Elamvazuthi, I. and Ali, S.S.A. and Natarajan, E. and Paramasivam, S. (2021) A Hybridized Pre-Processing Method for Detecting Tuberculosis using Deep Learning. In: UNSPECIFIED.
Full text not available from this repository.Abstract
Tuberculosis (TB), a disease that targets the individual's lungs and can cause fatalities can be cured if detected and treated early. Computer Aided Diagnosis (CAD) systems could be utilized to detect the presence of TB in Chest X-Ray Images (CXR). This paper proposes to investigate a hybridized pre-processing method for Convolutional Neural Network (CNN) CAD system for detecting TB in CXR images. The aim of this research is to improve the performance of CNNs by combining two different pre-processing methods and to further multi-classify different manifestation of TB. In this research, the experimental design is to apply augmentation and segmentation to CXR images as pre-processing and use a pretrained CNN model to classify the pre-processed images. It is hypothesized that the research would improve the accuracy and Area Under Curve (AUC) of detection of TB in CXR images. © 2021 IEEE.
Item Type: | Conference or Workshop Item (UNSPECIFIED) |
---|---|
Impact Factor: | cited By 0 |
Uncontrolled Keywords: | Computer aided diagnosis; Convolutional neural networks; Deep learning; Image segmentation; Processing, Augmentation; Chest X-ray image; Chest X-ray image image; Computer aided diagnosis systems; Convolutional neural network; Network computers; Pre-processing; Pre-processing method; Segmentation; Tuberculosis, Image enhancement |
Depositing User: | Ms Sharifah Fahimah Saiyed Yeop |
Date Deposited: | 25 Mar 2022 01:11 |
Last Modified: | 25 Mar 2022 01:11 |
URI: | http://scholars.utp.edu.my/id/eprint/29184 |