Optimal parameters of an ELM-based interval type 2 fuzzy logic system: a hybrid learning algorithm

Hassan, S. and Khanesar, M.A. and Jaafar, J. and Khosravi, A. (2018) Optimal parameters of an ELM-based interval type 2 fuzzy logic system: a hybrid learning algorithm. Neural Computing and Applications, 29 (4). pp. 1001-1014.

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

An optimized design of a fuzzy logic system can be regarded as setting of different parameters of the system automatically. For a single parameter, there may exist multiple feasible values. Consequently, with the increase in number of parameters, the complexity of a system increases. Type 2 fuzzy logic system has more parameters than the type 1 fuzzy logic system and is therefore much more complex than its counterpart. This paper proposes optimal parameters for an extreme learning machine-based interval type 2 fuzzy logic system to learn its best configuration. Extreme learning machine (ELM) is utilized to tune the consequent parameters of the interval type 2 fuzzy logic system (IT2FLS). A disadvantage of ELM is the random generation of its hidden neuron that causes additional uncertainty, in both approximation and learning. In order to overcome this limitation in an ELM-based IT2FLS, artificial bee colony optimization algorithm is utilized to obtain its antecedent parts parameters. The simulation results verified better performance of the proposed IT2FLS over other models with the benchmark data sets. © 2016, The Natural Computing Applications Forum.

Item Type: Article
Impact Factor: cited By 0
Uncontrolled Keywords: Algorithms; Benchmarking; Computer circuits; Knowledge acquisition; Learning algorithms; Learning systems; Optimization; Parameter estimation; Reconfigurable hardware, Artificial bee colonies; Extreme learning machine; Hybrid learning; Interval type-2 fuzzy logic systems; Optimal parameter, Fuzzy logic
Depositing User: Mr Ahmad Suhairi Mohamed Lazim
Date Deposited: 01 Aug 2018 02:02
Last Modified: 01 Aug 2018 02:02
URI: http://scholars.utp.edu.my/id/eprint/21816

Actions (login required)

View Item
View Item