Ding, S.H. and Chew, T.L. and Oh, P.C. and Ahmad, A.L. and Jawad, Z.A. (2018) Preparation of mixed matrix membrane using cellulose acetate incorporated with synthesized KIT-6 silica. Journal of Mechanical Engineering and Sciences, 12 (1). pp. 3505-3514.
Full text not available from this repository.Abstract
There is increasing interest among researchers to develop Mixed Matrix Membranes (MMMs), by incorporating fillers in polymer membranes. However, these membranes always suffer from a trade-off between permeability and selectivity as proven by Robeson in upper bound curves developed in gas separation applications. In current project, mesoporous silica, KIT-6 was synthesized and followed by incorporation of KIT-6 as filler into cellulose acetate (CA) matrix to form MMMs. The fabrications of MMMs were done by using dry phase inversion method. The KIT-6 loadings in the MMMs were varied from 2 to 10 wt. The properties of KIT-6 and membranes were characterized with Scanning electron microscopy (SEM), Fourier transform infrared (FTIR), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA). The effect of KIT-6 loadings on the properties of the formed MMMs was investigated. XRD and FTIR results suggested that KIT-6 mesoporous silica is successfully synthesized. The TGA curve indicate the overall weight loss of 3.02 for KIT-6 and 72.29-86.77 for all the membranes. The successful incorporation of silica particles into CA polymer matrix is confirmed by FTIR spectrum while MMMs images from SEM suggested that KIT-6 silica powder could embed well with CA polymer matrix. Defect-free MMMs could be fabricated and potential to be use in future especially in gas separation. © Universiti Malaysia Pahang, Malaysia
Item Type: | Article |
---|---|
Impact Factor: | cited By 0 |
Departments / MOR / COE: | Research Institutes > Institute for Contaminant Management |
Depositing User: | Mr Ahmad Suhairi Mohamed Lazim |
Date Deposited: | 23 Jul 2018 03:30 |
Last Modified: | 11 Oct 2018 02:01 |
URI: | http://scholars.utp.edu.my/id/eprint/20572 |