Green urea synthesis catalyzed by hematite nanowires in magnetic field

Yahya, N. and Qureshi, S. and Rehman, Z.U. and Alqasem, B. and Fai Kait, C. (2017) Green urea synthesis catalyzed by hematite nanowires in magnetic field. Journal of Magnetism and Magnetic Materials, 428. pp. 469-480.

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

The catalytic activity of hematite (α-Fe2O3) nanowires under the influence of magnetic field on urea synthesis is considered green. The adsorption and subsequent dissociative reaction of hydrogen, nitrogen and carbon dioxide gases on the α-Fe2O3 (111) nanowires were investigated using the density functional theory (DFT) method. The average adsorption energy is −4.12 kcal/mole at different sites. The adsorption of gases resulted in a difference in density and net spin of electrons from 68 to 120 and 0–21 respectively. In addition, it induces magnetic moment value of 36.33 µB, which confirms the enhanced magnetic behaviour of hematite. α-Fe2O3 nanowires (NWs) synthesized by heating iron wire in a box furnace at (750−800) °C and as synthesized α-Fe2O3 nanoparticles (NPs) were received to use as a catalyst in the magnetic reaction of urea synthesis. X-ray Diffractometer (XRD) confirms the peaks of rhombohedral structure of α-Fe2O3 and Raman spectrum analyses confirms the α-Fe2O3 peaks at 410 cm−1, 500 cm−1 and 616 cm−1. The needle-like shape of hematite nanowires with length ranging from 16–25) μm and diameter from 74 to 145 nm confirmed by Field emission scanning electron microscopy (FESEM). The magnetic properties of the nanowires exhibited different levels of saturation magnetization, for α-Fe2O3 perpendicularly aligned direction (13.18 emu/g) and random direction (10.73 emu/g). Urea synthesis was done under magnetic field ranges from 0.0 to 2.5 T. The activation energy of α-Fe2O3 NWs for urea production is lower than NPs in the range of 0–1 T, whereas it is reversed for higher magnetic induction values. Fourier transform infrared spectroscopy (FTIR) confirmed the formation of urea at the peaks of 1690–1600 cm−1. This green urea employing magnetically induced method could be a contender to the Haber-Bosch process currently used by the current industry which utilizes high temperature and high pressure. © 2017 The Authors

Item Type: Article
Impact Factor: cited By 2
Departments / MOR / COE: Departments > Fundamental & Applied Sciences
Depositing User: Mr Ahmad Suhairi Mohamed Lazim
Date Deposited: 20 Apr 2018 06:49
Last Modified: 20 Apr 2018 06:49
URI: http://scholars.utp.edu.my/id/eprint/19532

Actions (login required)

View Item
View Item