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Dynamic Responses of Magneto-Thermo-Electro-Elastic Shell Structures with
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Abstract: An analytical solution for piezolaminated shell structure and embedded smart materials 15 presented
in this study. In this study, the fundamental theory was derived based on the generic first-order transversely
shearable deformation theory involving Codazzi-Gauss geometrical discretion. The fundamental equation and
its boundary conditions was strenuously derived using Hamilton’s principle with cooperating of Gibbs free
energy function. The theory was casted in version of shell of revolution, m order to be sumplified to account
for commonly occurring sensors and actuator geometries and intended for wide range of common smart
materials. Then the developed theory was solved by the generic forced-solution procedure. The responses and
their frequency parameters were evaluated m the simply supported boundary condition. The results have
shown a close agreement with those reported mn literature. The developed theory and the presented solution
procedure may serve as a reference in developing the magneto-thermo-electro-elastic shell theories
and to improve the benchmark solutions for judging the existence of imprecise theories and other numerical
approaches.
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INTRODUCTION

Structronics is concept of “StructurestElectronics”,
which are synergistic integration of smart, adaptive or
responsive materials, that contains the main structure and
the distributed functional materials (e.g., piezoelectric,
piezomagnetic, electrostrictive, magnetostrictive and
alike materials). Furthermore, structronic refer to a class of
structures had the capability of simultaneously
sensing/actuating, mechamcal, electrical, magnetic and
even thermal effects, as well as simultanecusly generating
control forces to eliminate the undesirable effects or to
enhance the desirable one. Whereas, Structronics are
largely improves the working performance and lifetime of
devices that construct from it (Badri and Al-Kayiem,
2012a; Bassiouny, 2006). Several accurate solutions of
structronics shell have been presented using 3-D and 2-D
theories or the discrete layer approaches. The exact
closed-form solutions for multilayered piezo-electric-
magnetic and purely elastic plates have been proved for
special cases of Pan’s analysis. Heyliger and Pan (2004)
demonstrated the free vibration analysis of the smmply
supported and multilayered Magneto-electro-elastic
(MEE) plates under cylindrical bending.

Then, Heyliger ef al. (2004) studied two cases of the
MEE plates subjected to static fields, one under
cylindrical bending and the other of completely
traction-free under swface potentials. Following up the
previous Stroh formulation, Pan and Han (2005) presented
the 3-D solutions of multilayered Functionally Graded
(FG) and MEE plates. Wang et of. (2003) proposed a
modified state vector approach to obtain 3-D solutions for
MEE laminates, based on the mixed formulation of solid
mechanics.

By an asymptotic approach, Tsai et al. (2008)
studied 3-D static and dynamic behavior of doubly curved
FG-MEE shells under the mechanical load, electric
displacement and magnetic flux by considered the edge
boundary conditions as full simple supports.

In comparison with the recently development of
smart shell it could be said that the literature dealing
with theoretical work i piezolaminated shell concermng
coupled field phenomena in general and in magneto-
thermo-electro-elastic (MTEE) in particular, is rather
scarce, especially for shear deformation studies.

In this study, a fundamental theory of piezolaminates
shell/plates based on the First-order Transversely Shear
Deformations Theory (FSDT) will be developed. New

Corresponding Author: Thar M. Badri, Department of Mechanical Engineering, Universiti Teknologi PETRONAS,
Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia
2541



J. Applied Sci., 12 (24): 2541-2547, 2012

issues elicited by the structural lamination, such as the
distributions of center deflection over the thickness of
shell are addressed.

The results supplied herein are expected to provide a
foundation for the mvestigation of the interactive effects
among the thermal, magnetic, electric and elastic fields in
thin-walled structures and of the possibility to apply the
MTEE adapting.

FOUNDATIONS THEORY
In order to be reasonably self-contained, in what
follows, here will summarize the fundamental physical
laws that govern the conservation law of electro-magnetic

field and they are:

*  Faraday’s law:

curl{=— S,LEJ- Sds
at 5

+  Ampere’s law:

curlx =— J,Li _[ e.ds
at g,

¢ Gauss’s law:

divs:Fz,;_l. Frdv= f e.ds
18 [*9

+  Conservation of flux:

divg=F*, > [F.dv=[ 6.ds
v 18

THEORY OF VARTATIONAL PRINCIPLE

The energy functional are important for their use in
approximate methods as well as deriving a consistent set
of equations of motion coupled with free charge
equations and its boundary conditions (Reddy, 1984;
Bao, 1996; Tzou et al., 2004; Badri and Al-Kayiem, 2012b).
In summary, the total energy of a shell element is defined
as:

5" [K - Pldt=0 (1)

where, P is total potential energy:

P=[fl.[Q @250+ (7 Jav

(2)
~[[(t(8,.8)+ Wi, 5,50

where, Q (8, &, g, T),t (3, &, g,) and W (, &, g,) are the
thermodynamic potential “Gibbs free energy™, tractions
and the work done by body force, electrical and magnetic
charge, respectively. Moreover, the kinetic energy is:

K:%J.J'_[V[u2 +97 + Wi dv (3)

Substituting Eq. 2 and 3 into Eq. 1 yields:

ul
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The kinetic energy of the shell can be expressed as:

o [93 Vi)
K= ff [ | +2mtewi)
B 1/ 2 a9 a9 (4)
+20 [l + 2]

x[Hi}{lJri]ABdCdA
R, R,

Based on the conservation laws of electro-magnetic
field, the linear thermodynamic potential energy Q for
quasi-static infinitesimal reversible system, subject to
mechanical, electric, magnetic and thermal influences from
its surroundings, can be approximated by:

1
Q(81=Ej=g1=T)EE(S|J RN 8y Xy -F)

Means that 8;,&;,4; and 7 are the dependent
variables of Q. while s, , &, , x, and F are the natural
independent obtain  the
thermodynamic potential for which these variables are
natural, 1s performed (Perez-Fernandez et af., 2009), that
is:

variables. In order to

2Q=ci” £yt — B’ Euly 1 XX, — 70T
25T g B~ 1Y £, — 2A5FE, T Zni{&nxp
—ptE T,

where, Q 13 commonly known as Gibbs free energy, the
superscripts indicate that the magnitudes must be kept
constant when measuring them in the laboratory frame.
The constitutive relations can be expressed formally by
differentiation of Q corresponding to each dependent
variable as:
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Then the total thermodynamic potential is given by:

_90 5 905 O o 0O 6
T2t ag.ag ax.sx = ()

Whle the tractions are:

(8, Bu, +5,8v, + an 5w )
+(8, 80 +£_ 50 (7
+(G_8q +G, 3

t(S,.5,G) =

Moreover, the external study is:

Fu, +Fv, +Ew,
W(S,.5.G) = | +Coy, +Ciu, +F'o, ®)
+C%0, +F°0, + C°8,

where, F¥,, F*;, and F¥,, are the distributed forces in «, B
and { directions, respectively and C°, and C°, are the
distributed couples about the middle surface of the shell.
Tn addition F&, C5, F? and C? are the distributed forces and
couples due to electrical and magnetic charge.

Substituting Eq. 6-8 n Eq. 2 and equating the resulted
equation with Eq. 1, yields the equations of motion of
piezolaminated shell as shown in Eq. © below.

Note that, the kinetic relations (i.e., the force and
moment resultants per unit length at the boundary €)) are
obtained by integrating the stresses over the shell
thickness as in Eq. 10.

1 22 o2
2 [Gy + ¥ +¥y] [648 —0,5 — Ky — A, 718

1 Lo,y b orel HoyEme, E-ng + plsg
8 2wl +vg] |ABdAdi— dvdt
-{ g 2 ) J m HArE-nE +py + 1Ty
Ll + o] b~ P&+ v, + Bufdr
8, (8o, + By, ) +8, (8w, +LBy,)+38, 6w)
X ({8, (B, +C39,)) (G, (30, + (30)))
TN - (eaBn + CBo) (6, B0, + C50y)) | |ABdadt; =0
bR
N [Bu, +Bpvy + Eowg + Cowr, + Cuurg]
“[Fq +C4]]
)

Not that, the temperature T is a known function of
position. Thus, temperature field enter the formulation
only through constitutive equations. While 1,, T, and T,
are, the mertia terms and they define as:

- 1
L= L+I+1 IR I = T IR
R, R, | R,R,
And:

Iy
L LY | 1 ALEhE. e

k=1 by -1

where, (I) is the mass density of the kth layer of the shell
per unit midsurface area. While the energy expressions
described above are used to derive the equations of
motion:

N, M 8,
3 3

Ny Mg 3
3 3

Q\x P\x SB;
3 3

G b al2 8,

N::B M::B = _[ (Lg) 8043 deo (1 0)

N[ e,

Ny Mg Zp

NS OM; G,
G G

Ny My Gy

Alsgo, can rewrite Eq. 10 in term of constitutive
relations Eq. 5 directly as that expressed below in Eq. 11.

Thus, the constitutive terms in Eg. 9 could be
replaced by the kinetic relations Eq. 11 for a reason of
casting the equation of motion to be dependent of forces
and moment resultant as well as to reduce the volume
integral to double mtegral.

By recasting Eq. 9 to put in the familiar form, the
govermning equations of motion and the equation charge
equilibrium for first-order shearable deformation case
could be derived based on the fundamental Lemma of
calculus of varations; e.g., by mtegrating the field
gradients by parts to relieve the virtual fields and setting
its coefficients to zero individually.

EQUATIONS OF MOTION

In order to solve the resulted equation of motion, we
introduce the following assumptions to cast the equation
of motion in thick (or shear deformation) shell theories.
Furthermore, the deepness (or shallowness) of the shell,
1s also one criterion used in developing shell equations
(Badri and Al-Kayiem, 2012c).

Thus, shell 1s referred to as a shallow, when it has
infinity R 5 and the term (14{/R;) = 1: Where R, is either of
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the curvature parameter R, Ry, or R, (Qatu, 2004). If it is
represented by the plane coordinate systems for the case
of rectangular orthotropy, this leads to constant
Lame parameters (1e., A, B = 1). In additional, the
radii of curvature are assumed very large compared to the
in-plane displacements. i.e., u/R; =0, where 1= ¢.p and
o, 0 = U, Or V,.

Hence, the procedure outlined above, is wvalid
wrespective of using the Navier solution The
Naviertype solution can be applied to obtain
exact solution as (K, + A M,) {A} = {F}, which is
an eigenvalue problem. For nontrivial solution,
the determinant of the matrix m the parenthesis is set
to zero. Then the configuration of K; terms for SS-1,
cross-ply and rectangular plane form is listed in the
Appendix.

RESULTS AND DISCUSSION

To prove the validity of the developed theory,
laminated composite square plate (a/b = 1) with both
the upper and lower surfaces embedded smart
materials 13 considered. The plate structure considered
here is made of BaTi0Q; and CoFe,O, composite material.
The material properties are given in several papers like
(Badri and Al-Kayiem, 2011a-c) and it will not be mcluded
here.

First, the example of sandwich piezoelectric and
magnetostrictive plate that studied and analyzed exactly
by wvarious researchers e.g., Pan and Heyliger (2001) and
Chen et al. (2005) is considered here for validation and
comparison. Table 1 gives the lowest five frequency
parameters:

Q=wa’ ’pm fﬁmh,

of the fundamental vibrational mode (m =n = 1) which is
of practical importance (Pan and Heyliger, 2002), whereas,
d,... being the maximum of the &, in the whole sandwich
plate and p,.. = 1. which was defined by Pan and

Heyliger (2002) and adopted by Chen et al. (2005). While
in Table 1 it clearly seen that the frequency results
obtamed by the present model are in close agreement with
those obtained by Chen et ol (2005) using alternative
state space formulations:

{Nify Miy}

wa Pfy . [Q;ﬁTExj_QE‘TE‘*‘_K;‘:T}S R 4 For(z, y)= (o, B
. = 1 |= 5T S T s Y , !

}Nw M*"é __}:[2(1,@ [QpT g +eu™ &+l + o] HRx]dc‘{andx#y

W3 My

3

R KN

(1)

Note that Table 1 shows the frequencies of the first
class of vibration only. Tt is worth to highlight that the 1st
mode of vibration shows 100% agreement with literature,
while the discrepancy in other higher modes are negligible
1in practical sense. Further results and conclusions about
the classes of vibration can be found by Pan and
Heyliger (2001) and Chen et ad. (2005) for BaTiO,/CoFe,0,
sandwich plate. In fact, those results have been
successfully reproduced and discrepancy around 3% is
observed.

It should be mentioned here that present model has
been verified for results available in literature for pure
elastic shell by letting Q; and/or ¥; equal to zero and
rigorous agreement was found.

While the bonded error for plate results
were predicted and explained as due to the
assumption of specialization of shell theory to
plate by letting R, =R;=R,;= . In essence the plate
can be regarded as a special case of the present
analysis, but in fact it has a purpose of verification
with literature only. In the other hand, Fig. 1 shows
the center deflections @, angle of twist |, and
in-plane displacement u and v, electrical potential ¢ and
magnetic potential @  sensory  responses  for
sandwich shell formed from three smart layers. It is
perceived that the elastic deflections, electrical
potential and magnetic potential have similar occurrence.

Table 1: Comparison of recent results of the lowest 5 frequency parameters of the sandwich plate with results of Pan and Heyliger (2002)

P only M only P/M/P" M/P/M
Order Ref Present! Ref. Present. Ref Present. Ref. Present.
1 2.30033 2.3003 1.97472 1.9747 1.82648 1.8366 1.89865 1.7474
2 2.80145 3.3011 2.33726 2.7774 2.15561 2.8999 2.31557 2.7622
3 3.93927 4.2475 3.18631 3.5198 3.07652 4.0917 3.11555 3.9047
4 5.31985 4.9574 4.23897 4.0664 4.11470 53178 4.17674 5.0882
5 6.79683 5.5112 5.37695 4.5048 5.24651 6.5492 5.30704 6.2878

+ Note that the present results are for shell of (R, Re, R, =) and the shear correction factor used in FSDT is (2 = 5/6), *(P/M/P) is denoting Piezoelectric
[inner]/Magnetostrictive [middle]/Piezoelectric [outer]
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Fig. 1. The uncontrolled responses of laminated composite spherical shell of at which the right side is representing the
P/M/P scheme when the left side 15 being for M/P/M

Tt is interesting to note, that the sensory responses have
simple discriminate behavior against the variation in the
shell dimensions.

CONCLUSION

In this study a model is developed for dynamic
analysis of piezolaminated shell structure and embedded
smart material lamina and influenced by MTEE load. The
fundamental theory is derived based on FSDT involving
Codazzi-Gauss geometrical discretion. The theory is
casted in version of piezolaminated plate of rectangular

plane-form (for purpose of validation and verification
only). At which the generic forced-solution procedures
for the response were derived and its frequency
parameters were evaluated in simply supported boundary
condition.

Results have shown a close agreement with those
obtained by Chen et al. (2005). Furthermore, the present
model has been verified for results available in literature
for pure elastic shell by assuming Q; and/or k; equal to
zero and rigorous agreement was also found.

The present results may serve as a reference in
developing the piezolammated shell theories andto
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improve the benchmark solutions for judging the
existence of imprecise theories and other numerical

approaches.
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APPENDIX
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NOMENCLATURE

Length and width of the shell in (im)
Lame’ parameter

Electric displacement

Electrical charge density

Electric current density or magnetic
charge density

Thermal forces resultant

Elastic body forces in (N)

Magnetic inductions

Kinetic energy

Unit outward normal

Edge forces, shear forces and its free
traction resultant

= Edge moment, higher shear terms and its

free traction resultant

Gibbs free energy in (Joule)
Mid-surface displacements of the shell
Radius of curvature

Stress field and Free elastic tractions,
respectively in (Pa)

Surface tractions

Thermal Gam (Entropy)

Work (body forces) in (N m)

Curvilinear coordinates, & and p for the
reference surface and z for the normal
axis

Thermo-magnetic

Elastic strain

Magneto-electric

Thermal properties (Pa/°C?)
Magneto-elastic

Thermo-elastic

Magnetic (Ns*/C?)

Electric field

Thermo-electric

= Density

Elastic properties in (pa)
Thermal Field

Electric properties in (C*/Nm?)
Electro-elastic

Electric potential
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X = Magnetic field vector
o) = Magnetic potential
V. g = Mid-surface rotations
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