Application of response surface methodology for optimizing transesterification of Moringa oleifera oil: Biodiesel production

Rashid, Umer and Anwar, Farooq and Ashraf, Muhamamd and Saleem, Muhammad and Yusup, Suzana (2011) Application of response surface methodology for optimizing transesterification of Moringa oleifera oil: Biodiesel production. Energy Conversion and Management, 8-9. pp. 3034-3042. ISSN 0196-8904

[thumbnail of Moringa_RSM.pdf] PDF
Moringa_RSM.pdf - Published Version
Restricted to Registered users only until December 2012.

Download (782kB) | Request a copy

Abstract

Response surface methodology (RSM), with central composite rotatable design (CCRD), was used to explore optimum conditions for the transesterification of Moringa oleifera oil. Effects of four variables,reaction temperature (25–65 C), reaction time (20–90 min), methanol/oil molar ratio (3:1–12:1) and catalyst concentration (0.25–1.25 wt.% KOH) were appraised. The quadratic term of methanol/oil molar
ratio, catalyst concentration and reaction time while the interaction terms of methanol/oil molar ratio with reaction temperature and catalyst concentration, reaction time with catalyst concentration exhibited significant effects on the yield of Moringa oil methyl esters (MOMEs)/biodiesel, p < 0.0001 and p < 0.05, respectively. Transesterification under the optimum conditions ascertained presently by RSM:
6.4:1 methanol/oil molar ratio, 0.80% catalyst concentration, 55 C reaction temperature and 71.08 min
reaction time offered 94.30% MOMEs yield. The observed and predicted values of MOMEs yield showed a linear relationship. GLC analysis of MOMEs revealed oleic acid methyl ester, with contribution of 73.22%, as the principal component. Other methyl esters detected were of palmitic, stearic, behenic and arachidic acids. Thermal stability of MOMEs produced was evaluated by thermogravimetric curve.
The fuel properties such as density, kinematic viscosity, lubricity, oxidative stability, higher heating value, cetane number and cloud point etc., of MOMEs were found to be within the ASTM D6751 and EN 14214 biodiesel standards.

Item Type: Article
Impact Factor: 1.944
Subjects: T Technology > TP Chemical technology
Departments / MOR / COE: Research Institutes > Green Technology
Depositing User: Assoc Prof Dr Suzana Yusup
Date Deposited: 30 May 2011 13:11
Last Modified: 20 Mar 2017 01:59
URI: http://scholars.utp.edu.my/id/eprint/5560

Actions (login required)

View Item
View Item