Effect of electrode gap on the sensing properties of multiwalled carbon nanotubes based gas sensor

Saheed, M.S.M. and Mohamed, N.M. and Burhanudin, Z.A. (2016) Effect of electrode gap on the sensing properties of multiwalled carbon nanotubes based gas sensor. In: UNSPECIFIED.

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Vertically aligned multiwalled carbon nanotubes (MWCNT) were grown on Si substrate coated with alumina and iron using chemical vapor deposition. Electrode gap of 10, 25 and 50 μm were adopted to determine the effect of varying gap spacing on the sensing properties such as voltage breakdown, sensitivity and selectivity for three gases namely argon, carbon dioxide and ammonia. Argon has the lowest voltage breakdown for every electrode gap. The fabricated MWCNT based gas sensor drastically reduced the voltage breakdown by 89.5 when the electrode spacing is reduced from 50 μm to 10 μm. The reduction is attributed to the high non-uniform electric field between the electrodes caused by the protrusion of nanotips. The sensor shows good sensitivity and selectivity with the ability to detect the gas in the mixture with air provided that the concentration is � 20 where the voltage breakdown will be close to the pure gas. © 2016 Author(s).

Item Type: Conference or Workshop Item (UNSPECIFIED)
Impact Factor: cited By 0
Depositing User: Ms Sharifah Fahimah Saiyed Yeop
Date Deposited: 25 Mar 2022 07:13
Last Modified: 25 Mar 2022 07:13
URI: http://scholars.utp.edu.my/id/eprint/30635

Actions (login required)

View Item
View Item