Preparation of Nano-Scale Biopolymer Extracted from Coconut Residue and Its Performance as Drag Reducing Agent (DRA)

Hasan, M.L.B. and Mohamed Khalid, M.N.B. (2016) Preparation of Nano-Scale Biopolymer Extracted from Coconut Residue and Its Performance as Drag Reducing Agent (DRA). In: UNSPECIFIED.

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Drag or frictional force is defined as force that acts opposite to the object's relative motion through a fluid which then will cause frictional pressure loss in the pipeline. Drag Reducing Agent (DRA) is used to solve this issue and most of the DRAs are synthetic polymers but has some environmental issues. Therefore for this study, biopolymer known as Coconut Residue (CR) is selected as the candidate to replace synthetic polymers DRA. The objective of this study is to evaluate the effectiveness of Nano-scale biopolymer DRA on the application of water injection system. Carboxymethyl cellulose (CMC) is extracted by synthesizing the cellulose extracted from CR under the alkali-catalyzed reaction using monochloroacetic acid. The synthesize process is held in controlled condition whereby the concentration of NaOH is kept at 60wt, 60 °C temperature and the reaction time is 4 hours. For every 25 g of dried CR used, the mass of synthesized CMC yield is at an average of 23.8 g. The synthesized CMC is then grinded in controlled parameters using the ball milling machine to get the Nano-scale size. The particle size obtained from this is 43.32 Nm which is in range of Nano size. This study proved that Nano-size CMC has higher percentage of drag reduction (DR) and flow increase (FI) if compared to normal-size CMC when tested in high and low flow rate; 44 to 48 increase in DR and FI when tested in low flow rate, and 16 to 18 increase in DR and FI when tested in high flow rate. The success of this research shows that Nano-scale DRA can be considered to be used to have better performance in reducing drag. © The Authors, published by EDP Sciences, 2017.

Item Type: Conference or Workshop Item (UNSPECIFIED)
Impact Factor: cited By 0
Uncontrolled Keywords: Ball milling; Biomolecules; Cellulose; Drag; Friction; Nanotechnology; Oil well flooding; Particle size; Polymers; Water injection, Carboxymethyl cellulose; Controlled conditions; Controlled parameter; Drag reducing agents; Environmental issues; Frictional pressure loss; Monochloroacetic acid; Water injection systems, Drag reduction, Carboxymethyl Cellulose; Cellulose; Friction; Pipe Lines; Pressure; Synthesis
Depositing User: Ms Sharifah Fahimah Saiyed Yeop
Date Deposited: 25 Mar 2022 07:10
Last Modified: 25 Mar 2022 07:10
URI: http://scholars.utp.edu.my/id/eprint/30538

Actions (login required)

View Item
View Item