Wave Height and Peak Wave Period Prediction Using Recurrent Neural Networks

Osawa, K. and Yamaguchi, H. and Umair, M. and Hashmani, M.A. and Horio, K. (2020) Wave Height and Peak Wave Period Prediction Using Recurrent Neural Networks. In: UNSPECIFIED.

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

In this paper, we applied a recurrent neural network to predict a wave height and a peak wave period for next 24 hours from only those last 24 hours. We adopted LSTM as the network structure and used statistic gradient decent method and adaptive moment estimation method as the learning methods. It was difficult to estimate short-time fluctuations because only the wave height and period data were used as inputs, but it was shown that the wave height and peak wave period within the next 2 hours can be predicted with an accuracy within 20 percent in error. © 2020 IEEE.

Item Type: Conference or Workshop Item (UNSPECIFIED)
Impact Factor: cited By 1
Uncontrolled Keywords: Intelligent computing; Learning systems; Water waves, Learning methods; Moment estimation method; Network structures; Wave heights; Wave period, Long short-term memory
Depositing User: Ms Sharifah Fahimah Saiyed Yeop
Date Deposited: 25 Mar 2022 03:04
Last Modified: 25 Mar 2022 03:04
URI: http://scholars.utp.edu.my/id/eprint/29863

Actions (login required)

View Item
View Item