Vision-Based Human Detection Techniques: A Descriptive Review

Sumit, S.S. and Rambli, D.R.A. and Mirjalili, S. (2021) Vision-Based Human Detection Techniques: A Descriptive Review. IEEE Access, 9 . pp. 42724-42761.

Full text not available from this repository.

Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....


Cameras are being used everywhere for the safety and security of citizens in different countries. Using a machine to detect humans in a photo or a video frame is a very complicated and challenging task. Various techniques have been developed for this purpose, which mainly rely on Artificial Intelligence. This article aims to provide a comprehensive review and analysis of the literatures from a descriptive perspective, which is its main differentiator from the existing survey papers in this area. Firstly, the vision-based human detection techniques and classifiers are elucidated in conjunction with the variants of feature extraction techniques. Secondly, various pros and cons of such techniques are discussed. Then, an investigation has been conducted and reported based on the state-of-the-art human detection descriptors (e.g. Log-Average Miss Rate and accuracy). Although techniques such as Viola-Jones and Speeded-Up Robust Features can detect objects in real-time and overcome Scale-Invariant Feature Transform (SIFT) limitations, they are still sensitive to illuminated conditions. Other techniques such as SIFT, Bag of Words, Orthogonal Moments, and Histogram of oriented Gradients provide other interesting benefits which include insensitivity to occlusion and clutters, simplicity, low-order element construction and invariance to illuminated conditions; nevertheless, they are computationally expensive and sensitive to image rotation. A meticulous review along similar lines revealed that the Deformable Part-based Model performs relatively better due to its ability to deal with particular pose variations and multiple views, occlusion handling (partial) and is application-free while its counterparts focus on only a single aspect. This article highlights and provides a brief description of each available data-sets for human detection research. Various use-cases of human detection systems are also elaborated. Finally, various conclusions are derived based on the conducted review followed by recommendations for future directions and possibilities to further improve the speed and accuracy of human detection systems. © 2013 IEEE.

Item Type:Article
Impact Factor:cited By 1
Uncontrolled Keywords:Artificial intelligence; Object detection; Object recognition; Turing machines, Deformable part-based models; Element construction; Feature extraction techniques; Histogram of oriented gradients; Occlusion handling; Safety and securities; Scale invariant feature transforms; Speeded up robust features, Feature extraction
ID Code:23841
Deposited By: Ms Sharifah Fahimah Saiyed Yeop
Deposited On:19 Aug 2021 13:09
Last Modified:19 Aug 2021 13:09

Repository Staff Only: item control page