Logo

A new approach to modelling micro-explosions in composite droplets

Sazhin, S.S. and Bar-Kohany, T. and Nissar, Z. and Antonov, D. and Strizhak, P.A. and Rybdylova, O.D. (2020) A new approach to modelling micro-explosions in composite droplets. International Journal of Heat and Mass Transfer, 161 .

Full text not available from this repository.

Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

A new approach to modelling puffing and micro-explosion in composite water/fuel droplets is proposed. This approach is based on the assumption previously made that a spherical water sub-droplet is located in the centre of a spherical fuel (n-dodecane) droplet. The heating of a fuel droplet is described by the heat conduction equation with the Robin boundary condition at its surface and continuity conditions at the fuel-water interface. The analytical solution to this equation, obtained at each time step, is incorporated into the numerical code and used for the analysis of droplet heating and evaporation. The effects of droplet thermal swelling are taken into account. The results of calculations using this code allowed us to obtain the time evolution of the temperature at the water/fuel interface and the evolution of time derivative of this temperature (T�) with time in the same location. Using the original and previously published experimental data, two new correlations for the nucleation temperatures TN as functions of T�, valid in the range 0�T��106 K/s, are suggested. Using these correlations and the values of T� inferred from the analysis, the time evolutions of the nucleation temperatures TN at the water-fuel interface are obtained. The predicted values of TN are compared with the values of temperature at this interface Tw. The time instant when Tw=TN is associated with the time instant when puffing/micro-explosion starts. © 2020 Elsevier Ltd

Item Type:Article
Impact Factor:cited By 6
Uncontrolled Keywords:Codes (symbols); Crystallization; Fuels; Heat conduction; Nucleation, Composite droplets; Continuity conditions; Droplet heating and evaporations; Heat conduction equations; New correlations; Nucleation temperature; Robin boundary conditions; Time evolutions, Drops
ID Code:23416
Deposited By: Ms Sharifah Fahimah Saiyed Yeop
Deposited On:19 Aug 2021 07:22
Last Modified:19 Aug 2021 07:22

Repository Staff Only: item control page