Evaluation of machine learning algorithms in predicting CO 2 internal corrosion in oil and gas pipelines

Mohammad Zubir, W.M.A. and Abdul Aziz, I. and Jaafar, J. (2019) Evaluation of machine learning algorithms in predicting CO 2 internal corrosion in oil and gas pipelines. Advances in Intelligent Systems and Computing, 859 . pp. 236-254.

Full text not available from this repository.

Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....


Over recent years, a lot of money have been spent by the oil and gas industry to maintain pipeline integrity, specifically in handling CO 2 internal corrosion. In fact, current solutions in pipeline corrosion maintenance are extremely costly to the companies. The empirical solutions also lack intelligence in adapting to different environment. In the absence of a suitable algorithm, the time taken to determine the corrosion occurrence is lengthy as a lot of testing is needed to choose the right solution. If the corrosion failed to be determined at an early stage, the pipes will burst leading to high catastrophe for the company in terms of costs and environmental effect. This creates a demand of utilizing machine learning in predicting corrosion occurrence. This paper discusses on the evaluation of machine learning algorithms in predicting CO 2 internal corrosion rate. It is because there are still gaps on study on evaluating suitable machine learning algorithms for corrosion prediction. The selected algorithms for this paper are Artificial Neural Network, Support Vector Machine and Random Forest. As there is limited data available for corrosion studies, a synthetic data was generated. The synthetic dataset was generated via random Gaussian function and incorporated de Waard-Milliams model, an empirical determination model for CO 2 internal corrosion. Based on the experiment conducted, Artificial Neural Network shows a more robust result in comparison to the other algorithms. © Springer Nature Switzerland AG. 2019.

Item Type:Article
Impact Factor:cited By 0; Conference of 2nd Computational Methods in Systems and Software, CoMeSySo 2018 ; Conference Date: 12 September 2018 Through 14 September 2018; Conference Code:217959
Uncontrolled Keywords:Carbon dioxide; Corrosion; Corrosion rate; Corrosive effects; Decision trees; Forecasting; Gas industry; Gas pipelines; Intelligent systems; Internal corrosion; Neural networks; Pipelines; Support vector machines, Corrosion prediction; Corrosion studies; de Waard-Milliams; Gaussian functions; Oil and Gas Industry; Oil-and-Gas pipelines; Pipeline integrity; Random forests, Learning algorithms
Departments / MOR / COE:Research Institutes > Institute for Autonomous Systems
ID Code:22218
Deposited By: Ahmad Suhairi
Deposited On:28 Feb 2019 05:12
Last Modified:26 Mar 2019 00:50

Repository Staff Only: item control page