Optimization of spinning parameters on the fabrication of NH 2 -MIL-53(Al)/cellulose acetate (CA) hollow fiber mixed matrix membrane for CO 2 separation

Mubashir, M. and Yeong, Y.F. and Chew, T.L. and Lau, K.K. (2019) Optimization of spinning parameters on the fabrication of NH 2 -MIL-53(Al)/cellulose acetate (CA) hollow fiber mixed matrix membrane for CO 2 separation. Separation and Purification Technology . pp. 32-43.

Full text not available from this repository.

Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....


The attractive features of this work lies on the optimization of spinning parameters including, take-up speed and air-gap distance on the fabrication of NH 2 -MIL-53(Al)/CA Hollow fiber mixed matrix membranes (HFMMMs) for gases separation. The morphology and distribution of particles in the resultant HFMMMs were characterized by using FESEM and EDX mapping, respectively. FESEM images showed that the increase in take-up speed and air-gap distance reduced the outer diameters of HFMMMs from 275.5 µm to 110.1 µm and 719.1 µm to 648.4 µm, respectively. The gas permeation results exhibited that the permeance values were reduced and ideal selectivities were improved with the increment of take-up speed. Increasing trend of ideal selectivities could be because of progression of polymer orientation, packing and mono-disperse space which suppressed the non-selective voids and Knudsen pores in the HFMMMs. However, variation of air-gap distance produced �V� and �A� pattern for permeance and ideal selectivity values, respectively, for all HFMMMs spun at different take-up speeds. The HFMMM spun at optimum spinning condition at take up speed of 12.2 m/min and air gap distances of 5.0 cm showed the highest CO 2 /CH 4 ideal selectivity of 16.0 and CO 2 /N 2 ideal selectivity of 12.0. Hence, optimization of spinning parameters can be considered as feasible and efficient method in order to fabricate HFMMMs with higher separation performance. The enhanced CO 2 permeance and ideal selectivities demonstrated that NH 2 -MIL-53(Al)/CA HFMMM spun at optimum condition is potential for industrial gas separation. © 2018

Item Type:Article
Impact Factor:cited By 0
Uncontrolled Keywords:Aluminum compounds; Carbon dioxide; Fabrication; Optimization; Speed; Spinning (fibers), Cellulose acetates; Distribution of particles; Hollow fiber membranes; Industrial gas separation; Mixed matrix membranes; NH2-MIL-53(Al); Separation performance; Spinning parameters, Gas permeable membranes, Air; Aluminum Compounds; Carbon Dioxide; Construction; Optimization; Separation; Velocity
ID Code:22089
Deposited By: Ahmad Suhairi
Deposited On:28 Feb 2019 08:24
Last Modified:28 Feb 2019 08:24

Repository Staff Only: item control page