Logo

Parallel based support vector regression for empirical modeling of nonlinear chemical process systems

Zabiri, H. and Marappagounder, R. and Ramli, N.M. (2018) Parallel based support vector regression for empirical modeling of nonlinear chemical process systems. Sains Malaysiana, 47 (3). pp. 635-643.

Full text not available from this repository.

Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

In this paper, a support vector regression (SVR) using radial basis function (RBF) kernel is proposed using an integrated parallel linear-and-nonlinear model framework for empirical modeling of nonlinear chemical process systems. Utilizing linear orthonormal basis filters (OBF) model to represent the linear structure, the developed empirical parallel model is tested for its performance under open-loop conditions in a nonlinear continuous stirred-tank reactor simulation case study as well as a highly nonlinear cascaded tank benchmark system. A comparative study between SVR and the parallel OBF-SVR models is then investigated. The results showed that the proposed parallel OBF-SVR model retained the same modelling efficiency as that of the SVR, whilst enhancing the generalization properties to out-of-sample data. © 2018 Penerbit Universiti Kebangsaan Malaysia. All Rights Reserved.

Item Type:Article
Impact Factor:cited By 0
Uncontrolled Keywords:benchmarking; comparative study; nonlinearity; numerical model; performance assessment; support vector machine
Departments / MOR / COE:Research Institutes > Institute for Autonomous Systems
ID Code:21730
Deposited By: Ahmad Suhairi
Deposited On:01 Aug 2018 02:06
Last Modified:07 Nov 2018 03:21

Repository Staff Only: item control page