Parallel based support vector regression for empirical modeling of nonlinear chemical process systems

Zabiri, H. and Marappagounder, R. and Ramli, N.M. (2018) Parallel based support vector regression for empirical modeling of nonlinear chemical process systems. Sains Malaysiana, 47 (3). pp. 635-643.

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

In this paper, a support vector regression (SVR) using radial basis function (RBF) kernel is proposed using an integrated parallel linear-and-nonlinear model framework for empirical modeling of nonlinear chemical process systems. Utilizing linear orthonormal basis filters (OBF) model to represent the linear structure, the developed empirical parallel model is tested for its performance under open-loop conditions in a nonlinear continuous stirred-tank reactor simulation case study as well as a highly nonlinear cascaded tank benchmark system. A comparative study between SVR and the parallel OBF-SVR models is then investigated. The results showed that the proposed parallel OBF-SVR model retained the same modelling efficiency as that of the SVR, whilst enhancing the generalization properties to out-of-sample data. © 2018 Penerbit Universiti Kebangsaan Malaysia. All Rights Reserved.

Item Type: Article
Impact Factor: cited By 0
Uncontrolled Keywords: benchmarking; comparative study; nonlinearity; numerical model; performance assessment; support vector machine
Departments / MOR / COE: Research Institutes > Institute for Contaminant Management
Depositing User: Mr Ahmad Suhairi Mohamed Lazim
Date Deposited: 26 Jul 2018 01:57
Last Modified: 11 Oct 2018 02:02
URI: http://scholars.utp.edu.my/id/eprint/20647

Actions (login required)

View Item
View Item