Enhanced people counting system based head-shoulder detection in dense crowd scenario

Hassan, M.A. and Pardiansyah, I. and Malik, A.S. and Faye, I. and Rasheed, W. (2017) Enhanced people counting system based head-shoulder detection in dense crowd scenario. International Conference on Intelligent and Advanced Systems, ICIAS 2016.

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Counting precisely the number of people in a crowd is one of the most attractive issues for video analytics application. In this paper, an integrated method using Histogram of Oriented Gradient (HOG) and Completed Local Binary Pattern (CLBP) is proposed to detect a head-shoulder region of people within image or video sequence. Head-shoulder region is used as features to detect people against the false positive and false negative issue. HOG and CLBP are used to extract the edge contour and texture features of head-shoulder region, respectively. The two features are fused together to generate a combined feature vector. Support Vector Machine (SVM) is used to execute classification of the fusion features to classify people from a mixture of objects. The results show that the detection rate of the proposed method HOG-CLBP, on Recall value and Accuracy, achieves better performance compared to the current method for dense crowd scenario. © 2016 IEEE.

Item Type: Article
Impact Factor: cited By 0
Departments / MOR / COE: Centre of Excellence > Center for Intelligent Signal and Imaging Research
Depositing User: Mr Ahmad Suhairi Mohamed Lazim
Date Deposited: 22 Apr 2018 14:44
Last Modified: 22 Apr 2018 14:44
URI: http://scholars.utp.edu.my/id/eprint/20188

Actions (login required)

View Item
View Item