Irreversible electroporation of multiple blood cells in continuous flow microfluidic device-A theoretical study

Basha, I.H.K. and Hamid, N.H. and Yousuff, C.M. and Ho, E.T.W. (2017) Irreversible electroporation of multiple blood cells in continuous flow microfluidic device-A theoretical study. International Conference on Intelligent and Advanced Systems, ICIAS 2016.

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

In this paper, we present a theoretical study on irreversible electroporation of multiple blood cells in a continuous flow microfluidic device for high throughput applications. Irreversible electroporation is the cell lysis process in which the application of electric field permanently permeabilizes the cell membrane, allowing the intercellular content to eject out for downstream genetic analysis. The device geometry can be manipulated for fluid transport and irreversible electroporation. Our study concentrates on the effect of voltage, flow velocity, geometry and the location of cells inside the device for efficient irreversible electroporation. Our results show that by controlling the applied voltage, cells can be irreversibly electroporated. The flow velocity influences irreversible electroporation. If the flow velocity is greater than the resident velocity of the cell, the pores on the membrane will reseal thereby resulting in reversible electroporation. The nanofluidic channels increase the duration of electroporation as the larger cells cannot pass through them. © 2016 IEEE.

Item Type: Article
Impact Factor: cited By 0
Departments / MOR / COE: Division > Academic > Faculty of Engineering > Electrical & Electronic Engineering
Depositing User: Mr Ahmad Suhairi Mohamed Lazim
Date Deposited: 22 Apr 2018 14:44
Last Modified: 22 Apr 2018 14:44
URI: http://scholars.utp.edu.my/id/eprint/20177

Actions (login required)

View Item
View Item