Logo

Bio-inspired NoC fault tolerant techniques using guaranteed throughput and best effort services

Sethi, Muhammad Athar Javed and Hussin, Fawnizu Azmadi and Hamid, Nor Hisham (2016) Bio-inspired NoC fault tolerant techniques using guaranteed throughput and best effort services. Integration, the VLSI Journal, 54 (3). pp. 65-96. ISSN 0167-9260

[img] PDF - Published Version
Restricted to Registered users only

2085Kb

Official URL: http://www.sciencedirect.com/science/article/pii/S...

Abstract

Best Effort (BE) and Guaranteed Throughput services (GT) are the two broad categories of communication services provided in NoC. Few of the existing NoC architectures provide both of these services. GT based services, which are based on circuit switching or connection oriented mechanisms of packet switching, are usually preferred for real time traffic while packet switching services are provided by the BE architecture. In this paper, biologically inspired fault tolerant techniques are implemented on these two different services. Biologically inspired techniques offer novel ways of making NoCs fault tolerant; faults in NoCs arise partly due to advanced nanoscale manufacturing processes and the complex communication requirements of the processing elements (PEs). The proposed NoCs fault-tolerant methods (synaptogenesis and sprouting) are adapted from the biological brain׳s robust fault tolerant mechanisms. These techniques are implemented on both BE and GT services. From the experimental results, the BE architecture was efficiently utilizing the bandwidth compared to GT services, while throughput utilization of GT services were better. The accepted traffic (flit/cycle/node) of the BE architecture is 6.31% better than GT architecture while the accepted traffic of the bio-inspired techniques is 72.12% better than traditional fault tolerant techniques.

Item Type:Article
Academic Subject One:Academic Department - Electrical And Electronics - Pervasisve Systems - Digital Electronics - System on Chip (SoC)
ID Code:11930
Deposited By: Dr Fawnizu Azmadi Hussin
Deposited On:07 Oct 2016 01:42
Last Modified:19 Jan 2017 08:20

Repository Staff Only: item control page

Document Downloads

More statistics for this item...