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Abstract 

Transportation electrification has undergone major changes since the last decade. 
Success of the smart grid with renewable energy integration solely depends upon 
the large-scale penetration of Plug-in Hybrid Electric Vehicles (PHEVs) for a 
sustainable and carbon-free transportation sector. One of the key performance 
indicators in the hybrid electric vehicle is the State-of-Charge (SoC), which needs 
to be optimized for the betterment of charging infrastructure using stochastic 
computational methods. In this paper, a newly emerged accelerated particle swarm 
optimization (APSO) technique was applied and compared with standard Particle 
swarm optimization (PSO), considering charging time and battery capacity. 
Simulation results obtained for maximizing the highly non-linear objective 
function indicate that APSO achieves some improvement in terms of best fitness 
and computation time. 
Keywords: Plug-in Hybrid Electric Vehicles, charging infrastructures, 
optimization, swarm intelligence, smart grid, battery capacity, State-of-Charge, 
charging efficiency, particle swarm optimization, accelerated particle swarm 
optimization. 

1 Introduction 

The vehicular network recently accounts for around 25% of CO2 emissions and 
over 55% of oil consumption around the world [1]. CO2	is the primary greenhouse 
gas emitted through human activities such as combustion of fossil fuels (coal, 
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natural gas, and oil) for energy and transportation. Several researchers have proved 
that a great amount of reductions in greenhouse gas emissions and the increasing 
dependence on oil could be accomplished by electrification of transport sector [2]. 
Indeed, the adoption of hybrid electric vehicles (HEVs) has brought significant 
market success over the past decade. Vehicles can be classified into three groups: 
internal combustion engine vehicles (ICEV), hybrid electric vehicles (HEV) and 
all-electric vehicles (AEV) [3]. Plug-in Hybrid Electric Vehicles (PHEVs) have 
very recently been introduced with a promise to boost up the overall fuel efficiency 
by holding a higher capacity battery system, which can be directly charged from 
conventional power grid system, helping the vehicles to operate continuously in 
“all-electric-range” (AER). An all-electric vehicle or AEV is a vehicle using 
electric power as the only source to move the vehicle [4]. PHEVs with a 
connection to the smart grid can own all of these strategies. Hence, the widely 
extended adoption of PHEVs might play a significant role in the alternative energy 
integration into traditional grid systems [5]. There is a need of efficient 
mechanisms and algorithms for smart grid technologies in order to solve highly 
diverse problems like energy management, cost reduction, efficient charging 
infrastructure etc. with different objectives and system constraints [6]. 
     According to the statistics of Electric Power Research Institute (EPRI), about 
62% of US vehicles will comprise PHEVs within the year 2050 [7]. Moreover, 
there is an increasing demand to implement this technology on the electric grid 
system. Large numbers of PHEVs have the capability to make threats to the 
stability of the power system. For example, in order to avoid disturbance when 
several thousand PHEVs are introduced into the system over a small period of 
time, the load on the power grid will need to be managed very carefully. One of 
the main targets is to facilitate the proper communication between the power grid 
and the PHEV. For the maximization of customer contentment and minimization 
of burdens on the grid, a complicated control appliance will need to be addressed 
in order to govern multiple battery loads from a numbers of PHEVs properly [8]. 
The total demand pattern will also have an important impact on the electricity 
production due to differences in the needs of the PHEVs parked in the deck at 
certain time [9]. Proper management can ensure strain minimization of the grid 
and enhance the transmission and generation of electric power supply. The control 
of PHEV charging depending on the locations can be classified into two groups; 
household charging and public charging. The proposed optimization focuses on 
the public charging station for plug-in vehicles because most of PHEV charging 
is expected to take place in public charging locations [10]. 
     Wide penetration of PHEVs in the market depends on a well-organized 
charging infrastructure. The power demand from this new load will put extra stress 
on the traditional power grid [12]. As a result, a good number of PHEV charging 
infrastructures with suitable facilities are essential to be built for recharging 
electric vehicles, for this some strategies have been proposed by the researchers 
[13, 14]. Charging stations are needed to be built at workplaces, markets/shopping 
malls and home. Boyle [15] proposed the necessity of building new smart charging 
station with effective communication among utilities along with sub-station 
control infrastructure in view of grid stability and proper energy utilization. 

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and The Environment, Vol 206, © 2015 WIT Press

262  Energy and Sustainability V: Special Contributions



Furthermore, sizeable energy storage, cost minimization; Quality of Services 
(QoS) and optimal power of intelligent charging station are underway [16]. Thus, 
the evolution of a reliable, efficient, robust and economical charging infrastructure 
is underway. In this wake, numerous techniques and methods have been proposed 
for the deployment of a charging station for PHEVs [17]. 
     One of the important constraints for accurate charging is State-of-Charge 
(SoC). The charging algorithm can be carefully managed by the precise state of 
charge evaluation [11]. An approximate graph of a typical Lithium-ion cell voltage 
versus SoC is shown in Fig. 1. The figure indicates that the slope of the curve 
below 20% and above 90% is high enough to result in a significant voltage 
difference to be depended on by measurement circuits and charge balancing 
control. There is the need for an in-depth study on the maximization of average 
SoC in order to facilitate intelligent energy allocation for PHEVs in a charging 
station. Accelerated PSO was developed by Xin-She Yang [18] at Cambridge 
University in 2007 in order to accelerate the convergence of the algorithm, to 
create the best one that can be used globally. 
     PSO- and APSO-based optimizations have already been studied by researchers 
for the optimal design of a substation grounding grid [19], non-convex 
optimization [20, 21], performance analysis of MIMO radar waveform [22], 
design of frame structures [23], dual channel speech enhancement [24], synthesis 
gas production [25] and a faster path planner [26]. Specifically, we are 
investigating the use of the accelerated particle swarm optimization (APSO) 
method for developing real-time and large-scale optimizations for allocating 
power. 
 

 

Figure 1: Li-ion cell voltage vs. State-of-Charge [27]. 

     The remainder of this paper is organized as follows: the next section will 
describe the specific problem that we are trying to solve. We will provide the 
optimization objective and constraints, mathematical formulation of our algorithm 
and review the APSO method as well as describe how the algorithm works for our 
optimization problems. The simulation results and analysis are then presented with 
an extensive comparison with standard PSO. Finally, conclusions and future 
directions are drawn. 
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2 Problem formulation 

The idea behind smart charging is to charge the vehicle when it is most favourable, 
which could be when electricity price and demand is lowest, and when there is 
excess capacity [6]. 
     Suppose there is a charging station with the capacity of total power P. Total N 
numbers of PHEVs need to be served in a day (24 hours). The proposed system 
should allow PHEVs to leave the charging station before their expected leaving 
time for making the system more effective. It is worth to mention that, each PHEV 
is regarded to be plugged-in to the charging station once. The main aim is to 
allocate power intelligently for each PHEV coming to the charging station. The 
State-of-Charge is the main parameter which needs to be maximized in order to 
allocate power efficiently. For this, the objective function considered in this paper 
is the maximization of average SoC and thus allocate energy for PHEVs at the 
next time step. The constraints considered are: charging time, present SoC and 
price of the energy [8]. 
     The objective function is defined as: 
 

                                  Max	Jଵ		ሺkሻ ൌ 	∑ w୧	୧ ሺkሻSoC୧ሺk ൅ 1ሻ                                (1) 
 

                                  w୧	ሺkሻ ൌ f	ሺC୰,୧ሺkሻ, T୰,୧ሺkሻ, D୧ሺkሻሻ                                   (2) 
 

                                  C୰,୧ሺkሻ ൌ ൫1 െ SoC୧ሺkሻ൯ ∗ C୧																																													(3) 
 

where C୰,୧ሺkሻ is the battery capacity (remaining) needed to be filled for i no. of 
PHEV at time step k; C୧ is the battery capacity (rated) of the i no. of PHEV; 
remaining time for charging a particular PHEV at time step k is expressed as 
T୰,୧ሺkሻ; the price difference between the real-time energy price and the price that 
a specific customer at the i no. of PHEV charger is willing to pay at time step k is 
presented by D୧ሺkሻ; w୧ሺkሻ is the charging weighting term of the i no. of PHEV at 
time step k (a function of charging time, present SoC and price of the energy); 
SoC୧ሺk ൅ 1ሻis the state of charge of the i no. of PHEV at time step k ൅ 1. 
     Here, the weighting term indicates a bonus proportional to the attributes of a 
specific PHEV. For example, if a PHEV has a lower initial SoC and less charging 
time (remaining), but the driver is eager to pay a higher price, the system will 
provide more power to this particular PHEV battery charger: 
 

                          	w୧	ሺkሻα	ሾCap୰,୧ሺkሻ ൅	D୧ሺkሻ ൅	1 T୰,୧ൗ ሺkሻሿ                          (4) 
 

     The charging current is also assumed to be constant over∆t. 
 

                      ሾSoC୧ሺk ൅ 1ሻ െ SoC୧	ሺkሻሿ. Cap୧=Q୧=I୧ሺkሻ∆t                        (5) 
  

                             SoC୧ሺk ൅ 1ሻ ൌ 	SoC୧	ሺkሻ ൅ I୧ሺkሻ∆t/Cap୧                           (6) 
 

where the sample time	∆t is defined by the charging station operators, and I୧ሺkሻ is 
the charging current over	∆t.  
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     The battery model is regarded as a capacitor circuit, where Ci is the capacitance 
of battery (Farad). The model is defined as 
 

C୧	.
ୢ୚౟
ୢ୲
ൌ 	 I୧                                                     (7) 

 
     Therefore, over a small time interval, one can assume the change of voltage to 
be linear 
 

                      C୧	. ሾV୧ሺk ൅ 1ሻ െ	V୧ሺkሻሿ/∆t ൌ 	 I୧																																									(8) 
 

                                    V୧ሺk ൅ 1ሻ െ	V୧ሺkሻ ൌ 	 I୧∆t/C୧                                         (9) 
 

     As the decision variable used here is the allocated power to the PHEVs, by 
replacing I୧	ሺkሻ with P୧ሺkሻthe objective function finally becomes: 
 

J	ሺkሻ ൌ 	∑ w୧.୧

ۏ
ێ
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		                   (10) 

 
     The power obtained from  the utility (Putility)  and  the maximum power (Pi,max) 
absorbed by a specific PHEV are the primary energy constraints being considered 
in this paper. The overall charging efficiency of a particular charging infrastructure 
is described by	η. From the system point of view, charging efficiency is supposed 
to be constant at any given time step. Maximum battery SoC	limit for the i no. of 
PHEV is	SoC୧,୫ୟ୶. When	SoC୧	reaches the values close to	SoC୧,୫ୟ୶, the i no.  
of battery charger shifts to a standby mode. The state of charge ramp rate is 
confined within limits by the constraint	ΔSoC୫ୟ୶. The overall control system is 
changed the state when i) system utility data updates; ii) a new PHEV is plugged-
in; iii) time period	Δt has periodically passed. 

3 Accelerated particle swarm optimization 

In APSO, each member of the population is called a particle and the population is 
called a swarm. Starting with a randomly initialized population and moving in 
randomly chosen directions, each particle moves through the searching space and 
remembers the best earlier positions, velocity and accelerations of itself and its 
neighbours. Particles of a swarm communicate good position, velocity and 
acceleration to each other as well as dynamically adjust their own position, 
velocity and acceleration derived from the best position of all particles. The next 
step starts when all particles have been shifted. Finally, all particles inclined to fly 
towards better positions over the searching process until the swarm move to close 
to an optimum of the fitness function. Fig. 2 shows the flowchart of APSO method. 
The standard PSO uses both the current global best g∗ andthe individual best	x୧

୲. 
The reason of using the individual best is mainly to increase the diversity in the 
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quality solutions; however, this diversity can be simulated using some 
randomness. Subsequently, there is no convincing reason for using the individual 
best, unless the optimization problem of interest is multimodal and highly 
nonlinear [24]. 
 

 

Figure 2: Flow chart of accelerated particle swarm optimization (APSO). 

     A simplified version, which could accelerate the convergence of the algorithm 
is to use the global best only. Thus, in the APSO [23], the velocity vector is 
generated by a simpler formula as where randn is drawn from (0, 1) to replace the 
second term. The update of the position is simply like (12).  

 
                        V୧

୲ାଵ ൌ 	V୧
୲ ൅ 	α ∙ randn	ሺtሻ ൅ β ∙ ሺg∗ െ	x୧

୲ሻ		                      (11) 
 

                         x୧
୲ାଵ ൌ ሺ1 െ βሻx୧

୲ ൅ 	βg∗ ൅ 	αr                                    (12) 
 

                                                α ൌ 0.7୲                                                    (13) 
 
     In order to increase the convergence even further, we can also write the update 
of the location in a single step, as this simpler version will give the same order of 
convergence. The typical values for this accelerated PSO are α ൎ
0.1~	0.4	and	β ൎ 0.1~	0.7; however, α ൎ 0.2	and β ൎ 0.5	 are recommended 
[19]. The parameter settings for APSO are demonstrated in table 1. 
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Table 1:  APSO parameter settings. 

Parameters Values 

Size of the swarm 100 

Maximum no. of steps 100 

Alpha, 	α 0.2 

Beta, 	β 0.5 

Maximum iteration 100 

Number of runs 30 

4 Simulation results and analysis 

4.1 Results 

The APSO and PSO algorithm were applied to find out global best fitness of the 
objective function. All the simulations were run on a Core™ i5-3470M CPU@ 
3.20 GHz processor, 4.00 GB RAM and MATLAB R2013a. 
     Table 2 summarizes the simulation results for 50, 100, 500 and 1000 PHEVs 
respectively for finding the maximum fitness value of objective function J (k). In 
order to evaluate the performance and show the efficiency and superiority of the 
proposed algorithm, we ran each scenario total 30 times.  
So it can be concluded that, APSO outperformed PSO in terms of Average best 
fitness. Starting from 50 numbers of PHEVs up to 1000 PHEVs, APSO shows 
better fitness value than PSO.  

Table 2:  Average best fitness for APSO and PSO. 

Average Best Fitness for PSO APSO 

50 PHEVs 142.839 165.96509 

100 PHEVs 171.102 182.93134 

500 PHEVs 150.869 197.59083 

1000 PHEVs 156.802 172.45284 

 
     Table 3 shows the computational time requirement for APSO and PSO method. 
As the number of PHEVs increased from 100 to 500 and 1000, APSO technique 
shows better result than standard PSO method in terms of computational time.  
     Fig. 3 shows the convergence behaviour (iteration vs. fitness value) of APSO 
technique. It can be apparently seen that although the algorithm has been set to run 
for maximum 100 iterations, the fitness value converges after 10 iterations and 
become stable. So, there is an early convergence which may cause the fitness 
function to trap into local minima. This can be avoided by increasing the size of 
swarm hence the computational time will also be increased as well. As a result, a 
trade-off should be taken into consideration between the proper convergence and 
computational time.  
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Table 3:  Computational time for APSO and PSO. 

Computational Time (sec.) PSO  APSO 

50 PHEVs 1.650 1.685 

100 PHEVs 1.686 1.690 

500 PHEVs 1.990 1.856 

1000 PHEVs 2.398 2.141 

 

 

Figure 3: Iteration vs. fitness value, J (k) for APS (100 PHEVs). 

4.2 Comparison between PSO and APSO 

Table 4 illustrates the advantages and disadvantages of both APSO and PSO 
techniques for solving various optimization problems.  

Table 4:  Advantages and disadvantages of PSO and APSO. 

Optimization 
Method 

 
 

PSO 
 
 
 
 

APSO 

Advantages 
 
 

Less parameters tuning 
Easy constraint  
Good for multi-

objective optimization  
 

Very efficient 
High quality solution 

Local exploitation 
capability 

Disadvantages 
 
 

Low quality solution 
Needs memory to update 

velocity 
early convergence 

 
 

Suffers from early convergence 
in the primary stages 

 
     Finally, from the Fig. 4 we can come into a conclusion that, APSO performs 
better than PSO in terms of average best fitness for up to 1000 PHEVs. 
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Figure 4: Average best fitness vs. no. of PHEVs (APSO and PSO). 

5 Conclusion and recommendations 

In this paper, APSO-based optimization was performed in order to optimally 
allocate power to each of the PHEVs entering into the charging station. A 
sophisticated controller will need to be designed in order to allocate power to 
PHEVs appropriately. For this wake, the applied algorithm in this paper is a step 
towards real-life implementation of such controller for PHEV Charging 
Infrastructures. Here, four (04) different numbers of PHEVs were considered for 
MATLAB Simulation and then obtained results were compared with PSO in terms 
of average best fitness and computational time. The success of the electrification 
of transportation sector solely depends on charging infrastructure. Only proper 
charging control and infrastructure management can assure the larger penetration 
of PHEVs. The researchers should try to develop efficient control mechanism for 
charging infrastructure in order to facilitate upcoming PHEVs penetration in 
highways. In future, more vehicles should be considered for intelligent power 
allocation strategy as well as hybrid versions of PSO should be applied to ensure 
higher fitness value and low computational time. 
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