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ABSTRACT

In this chapter, Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO) tech-
nique were applied for intelligent allocation of energy to the Plug-in Hybrid Electric Vehicles (PHEVs). 
Considering constraints such as energy price, remaining battery capacity, and remaining charging time, 
they optimized the State-of-Charge (SoC), a key performance indicator in hybrid electric vehicle for 
the betterment of charging infrastructure. Simulation results obtained for maximizing the highly non-
linear objective function evaluates the performance of both techniques in terms of global best fitness 
and computation time.

INTRODUCTION

Recent researches on green technologies for transportation sector are gaining popularity among the 
research communities from different areas. In this wake, Plug-in hybrid electric vehicles (PHEVs) have 
great future because of their charge storage system and charging facilities from traditional grid system. 
Several researchers have proved that a great amount of reductions in greenhouse gas emissions and the 
increasing dependence on oil could be accomplished by electrification of transport sector (Caramanis & 
Foster, 2009). Future transportation sector will depend much on the advancement of this emerging field 
of vehicle optimization. Indeed, the adoption of hybrid electric vehicles (HEVs) has brought significant 
market success over the past decade. Vehicles can be classified into three groups: internal combustion 
engine vehicles (ICEV), hybrid electric vehicles (HEV) and all- electric vehicles (AEV) (Tie & Tan, 
2013). Plug-in hybrid electric vehicles (PHEVs) which is very recently introduced promise to boost up the 
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overall fuel efficiency by holding a higher capacity battery system, which can be directly charged from 
conventional power grid system, that helps the vehicles to operate continuously in “all-electric-range” 
(AER). All-electric vehicles or AEVs is a kind of transport which use electric power as only sources to 
run the system. Plug-in hybrid electric vehicles with a connection to the smart grid can own all of these 
strategies. Hence, the widely extended adoption of PHEVs might play a significant role in the alternative 
energy integration into traditional grid systems (Lund & Kempton, 2008). There is a need of efficient 
mechanisms and algorithms for smart grid technologies in order to solve highly diverse problems like 
energy management, cost reduction, efficient charging station etc. with different objectives and system 
constraints (Hota, Juvvanapudi, & Bajpai, 2014).

According to a statistics of Electric Power Research Institute (EPRI), about 62% of the entire United 
States (US) vehicle will comprise of PHEVs within the year 2050 (Soares et al., 2013). Moreover, there is 
an increasing demand to implement this technology on the electric grid system. Large numbers of PHEVs 
have the capability to make threats to the stability of the power system. For example, in order to avoid 
disturbance when several thousand PHEVs are introduced into the system over a small period of time, 
the load on the power grid will need to be managed very carefully. One of the main targets is to facilitate 
the proper communication between the power grid and the PHEV. For the maximization of customer 
contentment and minimization of burdens on the grid, a complicated control appliance will need to be 
addressed in order to govern multiple battery loads from a numbers of PHEVs properly (Su & Chow, 
2012a). The total demand pattern will also have an important impact on the electricity production due 
to differences in the needs of the PHEVs parked in the deck at certain time (Su & Chow, 2011). Proper 
management can ensure strain minimization of the grid and enhance the transmission and generation 
of electric power supply. The control of PHEV charging depending on the locations can be classified 
into two groups; household charging and public charging. The proposed optimization focuses on the 
public charging station for plug-in vehicles because most of PHEV charging is expected to take place 
in public charging location (Su & Chow, 2012). Wide penetration of PHEVs in the market depends on 
a well-organized charging infrastructure. The power demand from this new load will put extra stress on 
the traditional power grid (Morrow, Karner, & Francfort, 2008). As a result, a good number of PHEV 
charging stations with suitable facilities are essential to be built for recharging electric vehicles, for 
this some strategies have been proposed by the researchers (Mayfield, Jul. 2012). Charging stations are 
needed to be built at workplaces, markets/shopping malls and home. Boyle (2007) proposed the neces-
sity of building new smart charging station with effective communication among utilities along with 
sub-station control infrastructure in view of grid stability and proper energy utilization. Furthermore, 
sizeable energy storage, cost minimization; Quality of Services (QoS) and intelligent charging station for 
optimal power are underway (Hess et al., 2012). In this wake, numerous techniques and methods were 
proposed for deployment of PHEV charging stations (Z. Li, Sahinoglu, Tao, & Teo, 2010).

One of the main targets is to facilitate the proper interaction between the power grid and the PHEV. 
For the maximization of customer satisfaction and minimization of burdens on the grid, a complicated 
control mechanism will need to be addressed in order to govern multiple battery loads from a numbers 
of PHEVs appropriately (Su & Chow, 2012b). Charging infrastructures are essential in order to facilitate 
the large-scale penetration of PHEVs. Different computational intelligence-based methods have been 
used by some researchers for charging station optimization of PHEV. Most of them applied traditional 
methods which are needed to be improved furthermore.

Swarm intelligence came from the mimic of the living colony such as ant, bird, and fish in nature, 
which shows unparalleled excellence in swarm than in single in food seeking or nest building. Drawing 
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inspiration from this, researches design many algorithms simulating colony living, such as ant colony 
algorithm, particle swarm optimization algorithm, artificial bee colony algorithm, and gravitational search 
algorithm, which shows excellent performance in dealing with complex optimization problems (Jia-zhao, 
C., Yu-xiang, Z., & Yin-sheng, L., 2012). The intrinsic characteristics of all the population-based meta-
heuristic algorithms like Particle swarm optimization (PSO) and Gravitational search algorithm (GSA) 
are to maintain a good compromise between exploration and exploitation in order to solve the complex 
optimization problems (Rashedi, E., Nezamabadi-Pour, 2009).

PSO is based on two fundamental disciplines: social science and computer science. In addition, PSO 
uses the swarm intelligence concept, which is the property of a system, whereby the collective behav-
iors of unsophisticated agents that are interacting locally with their environment create coherent global 
functional patterns. PSO algorithm has been successfully used for solving many problems related to 
power systems (Venayagamoorthy, G. K., Mohagheghi,2008) such as voltage security, optimal power 
flow, power system operation and planning, dynamic security, power quality, unit commitment, reactive 
power control, capacitor placement and optimizing controller parameters.

Moreover, GSA is based on the law of gravity and mass interactions where the searcher agents are 
a collection of masses which interact with each other based on the Newtonian gravity and the laws of 
motion (Rashedi, E., Nezamabadi-Pour, 2009). This method has also been used by the researchers for 
post-outage bus voltage magnitude calculations, solving economic dispatch with valve-point effects, 
optimal sizing and suitable placement for distributed generation (DG) in distribution system, Solving 
thermal unit commitment (UC) problem and finding out optimal solution for optimal power flow (OPF) 
problem in a power system (N. M., Puteh, M., & Mahmood, M. R., 2013).

The performance of PHEV depends upon proper utilization of electric power which is solely affected 
by the battery state-of-charge (SoC). In Plug-in hybrid electric vehicles (PHEVs), a key parameter is the 
state-of-charge (SoC) of the battery as it is a measure of the amount of electrical energy stored in it. It 
is analogous to fuel gauge on a conventional internal combustion (IC) car (Chiasson, J., & Vairamohan, 
B., 2005). State-of-charge determination becomes an increasingly vital issue in all the areas that include 
a battery. Previous operation policies made use of voltage limits only to guard the battery against deep 
discharge and overcharge. Currently, battery operation is changing to what could rather be called battery 
management than simply protection. For this improved battery control, the battery SoC is a key factor 
indeed (Piller, Perrin, & Jossen, 2001).

A charging station is one way that the operator of an electrical power grid can adapt energy produc-
tion to energy consumption, both of which can vary randomly over time. Basically, PHEVs in a charging 
station are charged during times when production exceeds consumption and are discharged at times when 
consumption exceeds production (S. Li, Bao, Fu, & Zheng, 2014). It is expected that mostly recharging 
will occur at home even if there is a sufficient public charging station network. It does not necessarily 
mean that there is no or lower need of public charging stations because many residences do not have 
adequate facilities for recharging EVs (Ul-Haq, Buccella, Cecati, & Khalid, 2013). There is a need of 
in-depth study on maximization of average SoC in order to facilitate intelligent energy allocation for 
PHEVs in a charging station.

The purpose of this chapter is to optimize state-of-charge with respect to total cost, charging time, 
present SoC. Two swarm intelligence-based methods, Particle swarm optimization (PSO) and Gravita-
tional search algorithm (GSA) were applied for solving the optimization problem.
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BACKGROUND

The vehicular network recently accounts for around 25% of CO2 emissions and over 55% of oil consump-
tion around the world. Carbon dioxide is the primary greenhouse gas emitted through human activities 
like combustion of fossil fuels (coal, natural gas, and oil) for energy and transportation. Several re-
searchers have proved that a great amount of reductions in greenhouse gas emissions and the increasing 
dependence on oil could be accomplished by electrification of transport sector (Holtz-Eakin & Selden, 
1995). Charging of PHEV/EV influences many parameters such as power rating, time of charging and 
location, cost, charging equipment, and effect on the power grid. Issues like charging time, distribution, 
standardization of demand policies for charging stations and proper regulatory procedures are needed 
to be addressed for the successful deployment of Electric vehicle charging station (Z. Li et al., 2010).

Most of the electric vehicles charging generally occur at charging area in one’s house where the 
vehicle can be connected to a garage outlet for Slow charging (Level-1). Level-2 charging is normally 
known as the primary technique for battery charging for both public and private utilities and needs an 
outlet of 240V. Future technologies focus on primary; fast charging and can be executed in most cases 
(Anegawa, 2009; Botsford & Szczepanek, 2009; Rawson & Kateley, 1999). Usually for Level-1 and 2 
charging uses single-phase systems. Level-3(DC fast charging) is made for commercial and public ap-
plications and would operate just like a normal filling station. Off-board three-phase solutions are applied 
to Level-3 chargers and high power. Level-2 or 3 chargers installed in parking lots, shopping centers, 
hotels, theaters, restaurants, etc. are expected to use by the general public stations (Aggeler, Canales, 
Coccia, Butcher, & Apeldoorn, 2010).

Opportunity Charging (Level-1 Charging)

The slowest of all available methods is Level-1 charging. In the United States, Level-1 charging uses a 
standard 120V/15A single-phase outlet which is grounded, such as NEMA 5-15R. The connection may 
use a standard J1772 connector into the electric vehicle ac port. No additional infrastructure is required 
for home or business sites. At night, low off-peak rates for charging are likely to be available. The total 
cost of a residential Level-1 charging infrastructure has been estimated around $500 - $880 (De Sousa, 
Silvestre, & Bouchez, 2010; Morrow, Karner, & Francfort, 2008).

Primary Charging (Level-2 Charging)

Level-2 charging is the basic method for dedicated public and private facilities. At present, Level-2 
equipment performs charging through 208V or 240V (at up to 80A, 19.2 kW). It may require dedicated 
equipment and a connection installation for home or public charging (Rawson & Kateley, 1999), although 
vehicles such as the Tesla have the power electronics on board. Most homes have 240 V service available, 
and Level-2 devices can charge a typical EV battery overnight. Owners seem likely to prefer Level-2 
technology owing to its faster charging time and standardized vehicle-to-charger connection. A separate 
billing meter is typical. The cost of residential Level-2 infrastructure installation is around $2,150. For 
example, the Tesla Roadster charging system has imposed additional cost of $3,000 (Motors, 2009).
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Fast Charging (Level-3 Charging)

Level-3 (DC fast charging) can be installed in highways and urban refueling points which is similar to 
petrol stations. It generally operates with a 480 V or higher three phase circuit and needs an off-board 
charger to provide regulated ac-dc conversion. Level-3 charging is very rear in the residential premises. 
Standards for dc plugs and hardware are in progress. CHAdeMO-a Japanese protocol is gaining world-
wide recognition (Yilmaz & Krein, 2012). Installation cost is a vital issue. Level-3 charging infrastruc-
ture costs between $30,000 and $160,000 have been reported. An efficient energy management system 
is proposed (Dusmez, Cook, & Khaligh, 2011) which notably reduce total time of PHEVs charging in 
fast charging infrastructure by the use of additional super capacitors and flywheel. The simulations for 
two batteries between 10kWh and 15kWh show that the charging time on average is 15 min to charge 
from a minimum SOC 20% to maximum 95% in the latest configuration. Finally, Figure 1 summarizes 
the charging methods.

Charging Infrastructures

Maintenance of the charging infrastructures is another cost factor (Brown, Mikulin, Rhazi, Seel, & 
Zimring, 2010). There are increasing numbers of literatures on various aspects of the EV charging al-
location strategies which includes the maintenance and scheduling of various chargers (Caramanis & 
Foster, 2009; Gan, Topcu, & Low, 2011; Kefayati & Caramanis, 2010; Ma, Callaway, & Hiskens, 2010; 
Pang, Dutta, Kim, Kezunovic, & Damnjanovic, 2010; Sojoudi & Low, 2011). Most of the works focus 
specially on residential charging schemes. Kulshrestha, Wang, Chow, and Lukic (2009) conducted stud-
ies based on simulation in energy management strategy (EMS) for PHEV/EV charging at parking areas 
where meta-heuristic algorithms for the purpose of efficient scheduling are applied. The electric vehicle 
charging for public garages is also considered (Su & Chow, 2011) where the objective is to maximize 
the throughput of service whereas the total cost of energy is not considered in the optimization. Subra-
manian et al. (2012) suggested a scheduling optimization using a combination of alternative energy and 
energy from the traditional grid.

The next section provides an overview of the charging infrastructure requirements for PHEVs/EVs 
in single-family household, multi-family household and commercial situations.

Figure 1. Charging infrastructure for PHEVs
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These scenarios include the following:

• Household garage charging.
• Apartment complex charging.
• Commercial complex charging.
• Charging from renewable energy sources.

Household Garage Charging

In order to install electric vehicle charging supply in a household garage, dedicated branch circuit from 
an existing house distribution panel to a convenience outlet or to a EVSE (Electric Vehicle Supply 
Equipment) is necessary (Morrow et al., 2008).

Apartment Complex Charging

Installation of the EV/PHEV charging supply in an apartment complex typically consists of installing 
new dedicated branch circuits from the central meter distribution panel to either a convenience outlet or 
to an EVSE (Morrow et al., 2008).

Commercial Complex Charging

Installation of the electric vehicle charging supply in a commercial complex parking lot typically consists 
of installing new dedicated branch circuits from the central meter distribution panel to an EVSE for Level-2 
charging. Large parking lots provide an opportunity to control a fleet of PHEVs in an intelligent manner.

Effective use of PHEVs in parking areas to prevent the transmission lines getting overloaded and to 
act as shock observers when the wind power changes drastically is explored by Venayagamoorthy and 
Mitra (2011). A fuzzy logic controller was proposed (Mitra & Venayagamoorthy, 2010) which takes 
the total state of charge of a parking lot, instantaneous demand and wind power generated as inputs and 
gives control signals for charging/discharging of the PHEVs. Simulations on a12 bus system model show 
that when PHEVs charge and discharge according to the control signal, overloading of the transmission 
lines during high wind speeds can be prevented and the wind power supply fluctuations to the grid can 
be minimized.

Charging from Renewable Energy Sources

The ability of PHEVs/EVs to assist the integration of renewable energy sources into the existing power 
grid is potentially the most transformative impact on the electricity system. Deployment of large-scale 
photovoltaic (PV) charging equipment in a parking lot is explained by Neumann, Schär, and Baumgartner 
(2012). PV parking lot charging and different business models to charge PHEVs/EVs with solar energy 
are also studied by Letendre (2009). Economics and environmental impacts of PV based workplace 
charging station has also been discussed (Birnie, 2009; Tulpule, Marano, Yurkovich, & Rizzoni, 2013). 
The analysis shows the technical feasibility of a PV powered workplace parking lot with benefits to the 
owner of the vehicle as compared to facilities of household charging. Authors conclude that the owner 
will get the return of establishment and maintenance cost and profit within the lifespan of the photovoltaic 
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panels. According to Birnie (2009), introducing a solar collector into a parking shade would result in a 
much more rapid pay-back-period, encouraging widespread installation of solar capacity. Zhang, Tezuka, 
Ishihara, and Mclellan (2012) explained smart control strategies for the integration of both EVs and PV 
together with the present electricity systems. Co-benefits of introducing large penetration of PHEVs 
and photovoltaic mechanisms have been analyzed by Denholm, Kuss, and Margolis (2013). The study 
came to a conclusion that PV has the capability of acting like a potential source of mid-day generation 
capacity for PHEVs as well as provide a dispatch able load during low demand periods (generally in the 
spring season). For this wake, a 2.1 kW PV charging station combined with the utility at Santa Monica 
is explained (Ingersoll & Perkins, 1996). Zhu, Yu, Ning, and Tang (2012) presented optimal charging 
control policy using stochastic semi-Markov decision (SMDP) process and later average reward was 
calculated using vehicle admission probability.

Smart grid has brought new opportunities and challenges for the development of electric vehicle 
Infrastructure facilities like charging station systems and parking lots. Recent advancement in renew-
able energy sector opens the option for a green infrastructure system which will minimize the burden of 
PHEVs in tradition grid-dependent charging stations.

Energy allocation to PHEV charging station is subjected to various constraints such as charging time, 
SoC and price which will be highlighted in the problem formulation section. Different constraints make 
the entire search space limited to a particular suitable region. So, powerful optimization algorithms should 
be implemented in order to achieve high quality solutions with a stable convergence rate.

MAIN FOCUS OF THE CHAPTER

Problem Statement

One of the important constraints for accurate charging is State-of-Charge (SoC). Charging algorithm 
can precisely be managed by the precise state of charge evaluation (Shafiei & Williamson, 2010). An 
approximate graph of a typical Lithium-ion cell voltage versus SoC is shown in Figure 2 indicates that 
the slope of the curve below 20% and above 90% is high enough to result in a significant voltage dif-
ference to be depended on by measurement circuits and charge balancing control. There is a need of 
in-depth study on maximization of average SoC in order to facilitate intelligent energy allocation for 
PHEVs in a charging station.

The idea behind smart charging is to charge the vehicle when it is most favourable, which could be 
when electricity price, demand is lowest, when there is excess capacity (Su & Chow, 2012a). When a 
vehicle is plugged in into a smart charging station a request for energy demand is sent to Substation 
Control Center (SCC), which decides based on the available energy from utility and either accepts the 
request or reject it. Performance of this kind of load management is measured in terms of delay, delivery 
ration and jitter. As a matter of fact EVs may be charged at any time of a day depending on requirement 
to top their batteries even during peak demand hours. Increasing load on the grid during peak hours may 
require extra power generation through any source which may increase the cost and greenhouse gases 
emission (Ul-Haq, Buccella, Cecati, & Khalid, 2013).

Suppose, there is a charging station with the capacity of total power P. Total N numbers of PHEVs 
need to be served in a day (24 hours). The proposed system should allow PHEVs to leave the charging 
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station before their expected leaving time for making the system more effective. It is worth to mention 
that, each PHEV is regarded to be plugged-in to the charging station once. The main aim is to allocate 
power intelligently for each PHEV coming to the charging station. The State-of-Charge is the main 
parameter which needs to be maximized in order to allocate power efficiently. For this, the objective 
function considered in this chapter is the maximization of average SoC and thus allocate energy for 
PHEVs at the next time step. The constraints considered are: charging time, present SoC and price of 
the energy (Su & Chow, 2012b).

The objective function is defined as:

( ) ( ) ( )   üüü i i
i

J k w k SoC k +∑  (1)

( ) ( ) ( ) ( )( ) , ,
=  ,  ,

i r i r i i
w k f C k T k D k  (2)

( ) ( )( ), = 1r i i iüüü − ⋅  (3)

where Cr,i(k) is the battery capacity (remaining) needed to be filled for i no. of PHEV at time step k; Ci is 
the battery capacity (rated) of the i no. of PHEV; remaining time for charging a particular PHEV at time 
step k is expressed as Tr,i(k); the price difference between the real-time energy price and the price that a 
specific customer at the i no. of PHEV charger is willing to pay at time step k is presented by Di(k); wi(k) 
is the charging weighting term of the i no. of PHEV at time step k (a function of charging time, present 
SoC and price of the energy); SoCi(k+1) is the state of charge of the i no. of PHEV at time step k+1.

Figure 2. Li-ion cell voltage vs. State-of-Charge
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Here, the weighting term indicates a bonus proportional to the attributes of a specific PHEV. For ex-
ample, if a PHEV has a lower initial state-of-charge and less charging time (remaining), but the driver is 
eager to pay a higher price, the system will provide more power to this particular PHEV battery charger:

( ) ( ) ( ) ( ) , ,   1 /i r i i r iw k Cap k D k T kα  + +   (4)

The charging current is also assumed to be constant over ∆t.

( ) ( ) ( )i+1 = =  i i i iSoC k SoC k Cap Q I k t − ⋅ ∆   (5)

( ) ( ) ( )i
1 =  + I /

i i i
SoC k SoC k k t Cap+ ∆  (6)

where the sample time ∆t is defined by the charging station operators, and Ii(k) is the charging current 
over ∆t.

The battery model is regarded as a capacitor circuit, where Ci is the capacitance of battery (Farad). 
The model is defined as

 . = i
i i

dV
C I

dt
 (7)

Therefore, over a small time interval, one can assume the change of voltage to be linear,

( ) ( ) . 1  /  = i i i iC V k V k t I+ − ∆    (8)

( ) ( )i
1  = /

i i i
®®®+ − ∆  (9)

As the decision variable used here is the allocated power to the PHEVs, by replacing Ii(k) with Pi(k) 
the objective function finally becomes:

( ) ( ) ( )
( ) ( ) ( )2

i

2
. +

2
0.5. . + k +

i
i i

i
i i

i

P k t
w SoC k

P k t
C V V k

C

J k

 
 
 ∆
 

 ∆ 
  
    

=∑  (10)
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Possible real-world constraints could include the charging rate (i.e., slow, medium, and fast), the time 
that the PHEV is connected to the grid, the desired departure state-of-charge, the maximum electricity price 
that a user is willing to pay, certain battery requirements etc. Furthermore, the available communication 
bandwidth could limit sampling time, which would have effects on the processing ability of the vehicle.

Power obtained from the utility (Putility) and the maximum power (Pi,max) absorbed by a specific PHEV 
are the primary energy constraints being considered in this chapter. The overall charging efficiency of 
a particular charging station is described by η. From the system point of view, charging efficiency is 
supposed to be constant at any given time step. Maximum battery SoC limit for the i no. of PHEV is 
SoCi,max. When SoCi reaches the values close to SoCi,max, the i no. of battery charger shifts to a standby 
mode. The state of charge ramp rate is confined within limits by the constraint ∆SoCmax. The overall 
control system is changed the state when i) system utility data updates; ii) a new PHEV is plugged-in; 
iii) time period ∆t has periodically passed.

Table 1 shows all the objective function parameters that were tuned for performing the optimization. 
There are total three (03) kinds of parameter: fixed, variables and constraints. Total charging time is fixed 
to 20 minutes and charging station efficiency assumed to be 0.9. The values are retrieved from various 
literatures (Hota, Juvvanapudi, & Bajpai, 2014; Su, 2012; Wencong & Mo-Yuen, 2011). Moreover, 
State-of-Charge is in the range of 0.2 to 0.8 (Chang, 2013).

Table 1. Parameter settings of the objective function

Parameter Values

Fixed Parameters Maximum power, Pi,max= 6.7 kWh

Charging station efficiency, η = 0.9

Total charging time, ∆t = 20 Minute

Power allocation to each PHEV: 30 W

Variables 0.2 ≤ State-of-Charge (SoC) ≤ 0.8

Waiting time ≤ 30 Minutes (1800 Seconds)

16 kWh ≤ Battery Capacity (Ci) ≤ 40 kWh

Constraints ( ) ( ) i utility
i

P k P k η≤ ×∑

( ) ( ) ,max0  i iP k P k≤ ≤

( )  ,max0  i iüüü≤ ≤

( ) ( )  max
0  1  

i i
SoC k SoC k SoC≤ + − ≤∆
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PROPOSED METHODS

Particle Swarm Optimization

PSO is an evolutionary computation technique which is proposed by Eberhart and Yuhui (2001). The 
PSO is inspired from social behavior of bird flocking. It uses a number of particles (candidate solutions) 
which fly around in the search space to find best solution. Meanwhile, they all look at the best particle 
(best solution) in their paths. In other words, particles consider their own best solutions as well as the 
best solution has found so far.

A PSO system begins with a primary initial population of random individuals, signifies solutions 
of problem, to which are allocated random velocities. Each particle in PSO should consider the current 
position, the current velocity, the distance to pbest, and the distance to gbest to modify its position. PSO 
is an iterative stochastic optimization method. It simulates the behavior of flocks of birds or schools of 
fish. In PSO, each solution is a “bird” (or, more generally, a “particle”) in the search space. All of the 
particles have (1) fitness values (which are evaluated by the fitness function to be optimized) and (2) 
velocities (which direct the flying of the particles). The particles fly through the search space by fol-
lowing the current optimum particles. At each iteration, each of the particles is updated by following 
the individual and group bests. Gradually, the particles tend toward the global “near-optima” region.

PSO was mathematically modeled as followed as:

( ) ( )1
1 2

= +   . - + . .  . -t t t t
i i i i i
V wv c rand pbest x c rand gbest x+  (11)

1 1   t t t
i i ix x V+ += +  (12)

where t
i
v  is the velocity of particle i at iteration, w is a weighting function usually used as follows

max min
max

max

- 
= -  

w
Itre

Itre

ω
ω ω  (13)

Appropriate values for ωmin and ωmax are 0.4 and 0.9. Appropriate value ranges for c1 and c2 are 1 to 
2, but 2 is most appropriate in many cases. rand is a random number between 0 and 1, t

ix  is the current 
position of particle i at iteration t, pbesti is the pbest of agent i at iteration t and gbest is the best solution 
so far. The parameter settings for PSO are demonstrated in Table 2. Total size of the swarm is 100 and 
PSO inertia is taken as 0.9. PSO is also fairly immune to the size and non-linear nature of the objective 
function being considered. The algorithm does not converge with less iterations, while more iterations 
increase computation complexity, so the maximum iterations are 100. Moreover, from the previous 
literature experiences, maximum 100 iterations are suitable for the PSO-based optimization.

The main advantage of PSO is its simplicity, while being capable of delivering accurate results 
consistently. It is fast and also very flexible, being applicable to a wide range of problems, with limited 
computational requirements (Eberhart & Yuhui, 2001). For these reasons, the present work focuses on 
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meta-heuristics optimization approaches, namely PSO applied in order to optimize the State-of-Charge 
for Charging Plug-in Hybrid Electric Vehicles.

Figure 3 shows the Structural diagram for PSO algorithm. The system initially has a population of 
random selective solutions. Each potential solution is called a particle. Each particle is given a random 
velocity and is flown through the problem space. The particles have memory and each particle keeps 
track of its previous best position (called the pbest) and its corresponding fitness. There exist a number 
of pbest for the respective particles in the swarm and the particle with greatest fitness is called the global 
best (gbest) of the swarm. The basic concept of the PSO technique lies in accelerating each particle 
towards its pbest and gbest locations, with a random weighted acceleration at each time step (Ganesan, 
Vasant, & Elamvazuthy, 2012).

Gravitational Search Algorithm

GSA is an optimization method which has been introduced by Rashedi et al. in the year of 2009. In 
GSA, the specifications of each mass (or agent) are total four, which is mass (inertial), position, mass 
(active gravitational) and mass (passive gravitational). The position of the mass presents a solution of a 
particular problem, and masses (gravitational and inertial) are obtained by using a fitness function. GSA 
can be considered as a collection of agents (candidate solutions), whose masses are proportional to their 
value of fitness function. During generations, all masses attract each other by the gravity forces between 
them. A heavier mass has the bigger attraction force. Therefore the heavier masses which are probably 
close to the global optimum attract the other masses proportional to their distances.

Law of Gravity: The law states that particles attract each other and the force of gravitation between 
two particles is directly proportional to the product of their masses and inversely proportional to the 
distance between them.

Law of Motion: The law states that the present velocity of any mass is the summation of the fraction 
of its previous velocity and the velocity variance. Variation in the velocity or acceleration of any mass 
is equal to the force acted on the system divided by inertia mass.

The gravitational force is expressed as follows:

( ) ( ) ( ) ( )
( ) ( ) ( )( )pi ajd d d

ij j i

ij

M t M t
F t G t x t x t

R t ε

×
= −

+
 (14)

Table 2. PSO parameter settings

Parameters Values

Size of the swarm 100

Maximum no. of steps 100

PSO parameter,c1 1.4

PSO parameter,c2 1.4

PSO inertia (w) 0.9

Maximum iteration 100

Number of runs 50
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where Maj is the active gravitational mass related to agent j, Mpi is the passive gravitational mass related 
to agent i, G(t) is gravitational constant at time t, ε is a small constant and Rij(t) is the Euclidian distance 
between two agents i and j. The G(t) is calculated as-

( ) ( )0 exp . / maxG t G iter iterα= × −  (15)

where α and G0 are descending coefficient and primary value respectively, current iteration and maxi-
mum number of iterations are expressed as iter and maxiter. In a problem space with the dimension d, 
the overall force acting on agent i is estimated as following equation:

( ) ( )
1,

N
d d
i j ij

j j i

F t rand F t
= ≠

= ∑  (16)

where randj is a random number with interval [0, 1]. From law of motion we know that, an agent’s ac-
celeration is directly proportional to the resultant force and inverse of its mass, so the acceleration of all 
agents should be calculated as follow:

Figure 3. Structural diagram of Particle Swarm Optimization
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( ) ( )
( )
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d
id

i

ii

F t
ac t

M t
 (17)

where t a specific is time and Mii is the mass of the object i. The velocity and position of agents are 
calculated as follow:

( ) ( ) ( ).1 + d d d
i i i ivel t rand vel t ac t+ =  (18)

( ) ( ) ( )+1 + 1d d d
i i i
x t x t vel t= +  (19)

where randi is a random number with interval [0, 1].
Gravitational and inertia masses are simply calculated by the fitness evaluation. A heavier mass means 

a more efficient agent. This means that better agents have higher attractions and walk more slowly. As-
suming the equality of the gravitational and inertia mass, the values of masses are calculated using the 
map of fitness. We update the gravitational and inertial masses by the following equations:

 , 1, 2, ,  ai pi ii iM M M M i N= = = = …  (20)

In Gravitational search algorithm, all agents are initialized first with random values. Each of the agents 
is a candidate solution. After initialization, velocities for all agents are defined using (18). Moreover, 
the gravitational constant, overall forces, and accelerations are determined by equations (15), (16) and 
(17) respectively. The positions of agents are calculated using (19). At the end, GSA will be terminated 
by meeting the stopping criterion of maximum 100 iterations. The parameter settings for GSA are dem-
onstrated in Table 3. The GSA parameters were selected: Primary parameter, G0 = 100, Acceleration 
coefficient, α =20 and No. of mass agents=100. Since each agent could observe the performance of the 
others, the gravitational force is an information-transferring tool.

Table 3. GSA parameter settings

Parameters Values

Primary parameter, G0 100

No. of mass agents, n 100

Acceleration coefficient, α 20

Constant parameter .01

Power of ‘R’ 1

Maximum iteration 100

Number of runs 50
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The Algorithm Outline

The outline of gravitational search algorithm is given in Algorithm 1.
Moreover, the step involves in optimization using GSA is shown Figure 4. Here, we assume that the 

gravitational and the inertia masses are the same. However, for some applications different values for 
them can be used. A bigger inertia mass provides a slower motion of agents in the search space and hence 
a more precise search. Conversely, a bigger gravitational mass causes a higher attraction of agents. This 
permits a considerable convergence (Rashedi, Nezamabadi-Pour, & Saryazdi, 2009). When an algorithm 
finds an optimal solution to a given problem, one of the important factors is speed and rate of convergence 
to the optimal solution. For heuristics, the additional consideration of how close the heuristic solution 
comes to optimally is generally the primary concern of the researcher(Barr, Golden, Kelly, Resende, 
& Stewart Jr, 1995). In GSA, the stable convergence and better exploitation rate ensures good quality 
solution, which is expressed in terms of best fitness function.

Solutions and Recommendations

The PSO and GSA algorithm were applied to find out global best fitness of the objective function. 
All the simulations were run on a Core™ i5-3470M CPU@ 3.20 GHz processor, 4.00 GB RAM and 
MATLAB R2013a.

Figure 5 shows the convergence behavior of GSA. The result derived in this chapter reveals that each 
object of the standard GSA converges to a stable point. Here, the assumption was that the gravitational 
and inertia masses are the same. However, for some applications different values for them can be used. 

Algorithm 1.

1.          Initialization of  total N mass agents randomly  

2.          Computation of  G(t), Fitness (Best and Worst) 

3.          For each of the agent I, evaluate: 

    3.1.                    Fitnessi

    3.2.                    Mass
i

    3.3.          Force of Mass
i

    3.4.          Acceleration of Mass
i

    3.5.           Mass
i
 velocity update

    3.6.          New position of Agenti

                 If (Probability
i
>Threshold)

                                    { 

                 If  

         Then return Best Fitness solution so far 

         Else 

                 Modification of solution 

                                    } 

4.          Failed to meet stopping criteria,  

           Go To Step 2, Else Stop
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Figure 4. Structural diagram of Gravitational Search Algorithm

Figure 5. Iteration vs. fitness value, J (k) for GSA [100 PHEVs]
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A heavier inertia mass provides a slower motion of agents in the search space and hence a more precise 
search (Rashedi et al., 2009). On the contrary, a heavier gravitational mass causes a higher attraction of 
agents. This allows a faster convergence. The analysis results confirm the convergence characteristics of 
GSA according to the given parameters ranges of the algorithm. The best fitness function convergences 
after 35 iterations for 100 numbers of PHEVs.

Particle Swarm Optimization (PSO) with the parameter settings stated in Table 2 was also performed 
for the same objective function and compared with the performance of gravitational search algorithm in 
terms of average best fitness. The swarm size and maximum iterations was set exactly same to that of 
GSA technique for the comparison purpose. The values of parameters c1, c2 and w were set as standard 
values, 1.4, 1.4 and 0.9 respectively. It can be apparently seen from Figure 6 that although the algorithm 
has been set to run for maximum 100 iterations, but the convergence happened in about 10 iterations. 
So, PSO takes less iterations to converge than GSA method due to the weak local search ability of GSA.

Comparison between GSA and PSO

Table 4 summarizes the comparisons of GSA with PSO algorithm in terms of average best fitness. Here, 
the average best fitness gives different values with the increment of PHEVs population. The conver-
gence rate of mass agents in GSA is good through the fast information flowing among mass agents, so 
its diversity decreases very quickly in the successive iterations and lead to a suboptimal solution. In the 
case of PSO, the algorithm cannot make full use of the feedback information in the system. There is 
also possibility of this algorithm to trap in the local optimal solution and lacks the searching capabilities 
within the whole search area.

Table 5 illustrates the advantages and disadvantages of both GSA and PSO for solving different op-
timization problems. Energy scheduling at a PHEV charging station is subjected to different constraints 
that limit the search space to a certain feasible region. PSO can easily handle the constraints separately, 
eliminating the need for additional parameters (Su & Chow, 2012a). PSO method is good for multi-

Figure 6. Iteration vs. fitness value, J (k) for PSO [100 PHEVs]
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objective optimization while GSA takes slightly more computational time with parameters tuning. The 
performance of both algorithms varies with the applications and different objective functions.

The average best fitness of both algorithms are represented with respect to number of vehicles (PHEVs) 
in Figure 7. From the figure it is clear that, Gravitational Search Algorithm (GSA) outperforms Particle 
Swarm Optimization (PSO) in terms of Average best fitness. Here, the average best fitness gives differ-
ent values with the increment of PHEVs population. The rate of convergence of mass agents in GSA is 
good through the fast information flowing among mass agents, so its diversity decreases very quickly 

Table 4. Average best fitness comparison between GSA and PSO

Average Best Fitness for PSO GSA

50 PHEVs 142.839 158.8289

100 PHEVs 171.102 182.3097

500 PHEVs 150.869 152.36437

1000 PHEVs 156.802 161.52349

Table 5. Advantages and disadvantages of PSO and GSA

Optimization Method Advantages Disadvantages

PSO Less parameters tuning 
Easy constraint 
Good for multi-objective optimization

Low quality solution 
Needs memory to update velocity 
Slow convergence rate

GSA High quality solution 
Good convergence rate 
Local exploitation capability

Needs more Computational time 
More parameters tuning

Figure 7. Average best fitness vs. no. of PHEVs
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in the successive iterations and lead to a suboptimal solution. Starting from 50 numbers of PHEVs up 
to 1000 PHEVs, GSA shows better fitness value than PSO.

Table 6 shows the computational time requirement for PSO and GSA method. As the number of 
PHEVs increased from 100 to 500 and then 1000, PSO technique shows better result than standard GSA 
method in terms of computational time.

Stability

Here, the average best fitness gives different values with the increment of PHEVs population. The rate 
of convergence of mass agents in GSA is good through the fast information flowing among mass agents, 
so its stability decreases very quickly in the successive iterations and lead to a suboptimal solution.

Robustness

The similar numeric patterns of Average best fitness shows the robustness of GSA method. This method 
resists change without adapting its initial stable configuration for different cases (no. of PHEVs) which 
proves GSA as a robust algorithm.

So, it can be concluded that, PSO obtains better result in terms of computational time while GSA 
performs well for achieving the best fitness values compared to PSO.

FUTURE RESEARCH DIRECTIONS

This paragraph summarizes the review results and suggests future directions of optimization techniques 
and procedures. The specific research field is relatively new and possible future perspectives have to be 
emphasized, so that new techniques can be realized.

Optimization Techniques

Possible characteristics of the future optimization tools are given below:

• Optimization techniques like evolutionary algorithms, direct search methods and other heuristic 
methods should be introduced in order to avoid the calculation of function derivatives. The expe-
rienced researcher should be able to choose the appropriate algorithm depending on the problem. 
Multi-objective capability should also be provided for multi-criteria optimization problems.

Table 6. Computational time for PSO and GSA

Computational Time (sec.) PSO GSA

50 PHEVs 1.650 2.721

100 PHEVs 1.686 4.439

500 PHEVs 1.990 18.165

1000 PHEVs 2.398 36.275
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• The future optimization tools should be capable of performing parallel processing evaluations on 
the same computer by using modern multi-core processor technology or to distribute the calcula-
tions to a cluster of computers. Such ability will substantially improve the simulation runtime.

• Advanced controlling mechanisms are necessary for allocating sufficient energy to a particular 
charging station in order to facilitate large-scale PHEV penetration in upcoming years.

• The future optimization tools should have the capability of stable convergence and thus provides 
good solution to the desired objective functions.

• Exploration and exploitation of the search space is essential in order to get desired solution within 
acceptable computation time.

• Finally, optimization of charging station needs proper selection of available resources as well as 
efficient available technique implementation.

Demand Side Management

Demand Side Management (DSM) is defined by Department of Energy (DOE) [69] as “Changes in 
electric usage by end-use customers from their normal consumption patterns in response to changes in 
the price of electricity over time, or incentive payments designed to induce lower electricity use at times 
of high wholesale market prices or when system reliability is jeopardized.” Therefore, the demand side 
management programs should be incorporated into the existing Intelligent Energy Management System 
(iEMS) model in order to avoid voltage sag and blackout and to maximize the financial benefits. In ad-
dition, this under-utilized capacity could effectively power a national fleet of PHEVs with little need to 
increase the energy delivery capacity of the existing grid infrastructure (Gerkensmeyer, Kintner-Meyer, 
& DeSteese, 2010).

Trade-Off between Cost and Performance

Considering the effects of cost and performance on the marketability of PHEVs, the objective function 
is defined to minimize drivetrain cost and driving performance requirements are selected as constraints 
to ensure that the vehicle performance is not sacrificed during the optimization. The battery is the key 
component within an electric vehicle (EV) which determines its overall capital cost and performance. 
Therefore, the task of determining the cost effectiveness of EVs is predominantly one of identifying the 
future trajectory of battery cost and performance. To meet power requirements: batteries have lower 
discharge power at low SoC and lower charge power at high SoC. To reduce safety risks, limiting the 
maximum SoC avoids overcharge situations.

CONCLUSION

Researchers are trying to design efficient controller for charging station and several literatures on 
optimization-based methods were published in this wake. These vehicles will help the government in its 
role of promoting energy security and environmental protection, when successfully marketed to consum-
ers. Efforts are also to be taken for provision of affordable and accessible infrastructure for recharging. 
Hence, thrust in research and development on the aforementioned design considerations and technological 
challenges coupled with government support in terms of incentives to the automobile owners and to the 
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manufacturers will go a long way in accelerating the deployment of large-scale PHEVs. In the future, 
more objective functions (such as minimizing the overall charging time, etc.) should be considered in 
order to satisfy both client interests and the requirements of the power grid. However, conflicts can arise 
when multiple objective functions are applied. The easiest solution to this problem involves combining 
all of the objectives into a single function. In this case, the weights assigned to each can be fixed or 
dynamically changed during the optimization process.

In this chapter, Particle swarm optimization (PSO) and Gravitational search algorithm (GSA)-based 
optimization were performed in order to optimally allocate power to each of the PHEVs entering into 
the charging station. A sophisticated controller will need to be designed in order to allocate power to 
PHEVs appropriately. For this wake, the applied algorithm is a step towards real-life implementation of 
such controller for PHEV charging stations. Here, four (04) different numbers of PHEVs were considered 
for MATLAB Simulation and then obtained results were compared with PSO in terms of average best 
fitness and computational time. The success of the electrification of transportation sector solely depends 
on charging infrastructure. Only proper charging control and infrastructure management can assure the 
larger penetration of PHEVs. The researchers should try to develop efficient control mechanism for 
charging infrastructure in order to facilitate upcoming PHEVs in highways. In future, more vehicles 
should be considered for intelligent power allocation strategy as well as hybrid versions of PSO and GSA 
should be applied to ensure higher fitness value and low computational time.
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KEY TERMS AND DEFINITIONS

All Electric Range: All electric range is a mode of electric vehicle when it is only run by charged 
batteries in order to reduce the overall fuel consumption. Calculation of all electric range varies according 
to the designs of the hybrid electric vehicles. The “all electric range” (AER) test quantifies the electric-
only miles possible with the battery for a particular configuration and vehicle class. Calculating AER 
is made more complicated because of variations in PHEV design. A vehicle like the Fisker Karma that 
utilizes a serial hybrid design has a clear AER. Similarly a vehicle like the Chevy Volt which disengages 
the internal combustion engine (ICE) from the drive train while in electric mode has a clear AER, how-
ever blended mode PHEVs which utilize the ICE and electric motor in conjunction do not have a clear 
AER because they utilize gasoline and grid provided electricity at the same time.

Charging Station: Charging station is an important component for the healthy growth of the electric 
vehicle industry. Charging station refers to an infrastructure similar to petrol station (for conventional 
vehicle) that provides electric energy for the charging of plug-in hybrid electric vehicles (PHEVs). Many 
charging stations are on-street facilities provided by electric utility companies, mobile charging stations 
have been recently introduced. From the grid standpoint, a charging station is one way that the operator 
of an electrical power grid can adapt energy production to energy consumption, both of which can vary 
randomly over time. Basically, EVs in a charging station are charged during times when production 
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exceeds consumption and are discharged at times when consumption exceeds production. In this way, 
electricity production need is not drastically scaled up and down to meet momentary consumption, which 
would increase efficiency and lower the cost of energy production and facilitate the use of intermittent 
energy sources, such as photovoltaic and wind.

Energy Security: The interest in energy security is based on the notion that an uninterrupted supply 
of energy is critical for the functioning of an economy. However, an exact definition of energy security is 
hard to give as it has different meanings to different people at different moments in time. It has tradition-
ally been associated with the securing of access to oil supplies and with impending fossil fuel depletion. 
With an increase in natural gas use, security concerns also arose for natural gas, widening the concept to 
cover other fuels. Because oil is nowadays a globally traded commodity, physical shortages show up in 
the price of oil on the world market, in the form of a long-term increase and of short-term fluctuations.

Gravitational Search Algorithm: Gravitational Search Algorithm (GSA) is a heuristic optimiza-
tion algorithm which has been gaining much interest among the scientific community recently. GSA is 
a nature inspired algorithm based on the Newton’s famous law of gravity and the law of motion. GSA is 
classified under population-based method and is reported to be more instinctive. In GSA, the agent has 
four parameters which are position, inertial mass, active gravitational mass, and passive gravitational 
mass. GSA is a memory-less algorithm. However, it works efficiently like the algorithms with memory.

Particle Swarm Optimization: Particle Swarm Optimization (PSO) algorithm was introduced by 
Kennedy and Eberhart in 1995, which is a heuristic global optimization method and a member of swarm 
intelligence family. PSO is a computational intelligence-based technique that is not largely affected by 
the size and nonlinearity of the problem, and can converge to the optimal solution in many problems 
where most analytical methods fail to converge.

Plug-In Hybrid Electric Vehicles: Plug-in Hybrid Electric Vehicles (PHEVs) are being made with 
relatively large sized batteries that can be charged during off-peak hours, and permit the vehicle owner 
to use exclusively electric made for 30 – 60 miles of driving as well as switching into traditional gasoline 
for longer trips. PHEVs offer customers the opportunity for fuel at gasoline-equivalent prices of less 
than $1.00 per gallon. For a given size battery bank, the range of a PHEV can be prolonged significantly 
before batteries need recharging by turning on the engine or fuel cell whenever the vehicle power demand 
exceeds some threshold.

Smart Charging: Smart charging refers to the intelligent control of electric vehicle charging by the 
assigned authority. Smart charging can be both direct and indirect depending upon the user demand and 
available infrastructure. The main concept of smart charging lies in the charging of vehicle when the 
price and demand are lowest as well as excess amount of available capacity. Charging itself is simple, 
once connected to the station charging takes place automatically. The system offers different options for 
customizing and personalizing charging, including the length of each charge. The control center manag-
ing the grid oversees the entire network as well as each individual charge, which enables users to check 
the operating status of charging stations and any eventual maintenance requirements. The control center 
also keeps track of each vehicles consumption.

Smart Grid: Smart grid is an intelligent bi-directional electrical power system. It ensures most 
advanced and efficient communication network between suppliers and consumers of electricity. Unlike 
traditional power grid, smart grid offers better system sustainability and network security. The “smart 
grid” includes advanced utility Supervisory Control and Data Acquisition (SCADA) systems that can 
keep track of thousands of data points of loads and resources, smart meters that can communicate to the 
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utility SCADA center, and smart appliances that can respond instantaneously to economic or reliability 
imperatives. The smart grid will make use of technologies, such as state estimation that improve fault 
detection and allow self-healing of the network without the intervention of technicians. This will ensure 
more reliable supply of electricity, and reduced vulnerability to natural disasters or attack. Next-generation 
transmission and distribution infrastructure will be better able to handle possible bi-direction energy 
flows, allowing for distributed generation such as from photovoltaic panels on building roofs, but also 
the use of fuel cells, charging to/from the batteries of electric cars, wind turbines, pumped hydroelectric 
power, and other sources.

State-of-Charge: State-of-Charge (SoC) of a PHEV battery is expressed as the ratio of its capacity 
of current ( ( )Q t ) to the nominal capacity (

n
Q ). The nominal capacity is known by the vehicle manu-

facturer and shows the maximum amount of charge that can be stored in the battery. SoC estimation is 
a fundamental challenge for battery use. The SoC of a battery, which is used to describe its remaining 
capacity, is a very important parameter for a control strategy. The SoC can be defined as follows: 

( )
n

Q tSoC
Q

= . Recently, with the development of artificial intelligence, various new adaptive systems 

for SOC estimation have been developed .The new developed methods include back propagation (BP) 
neural network, radial basis function (RBF) neural network, fuzzy logic methods, support vector machine, 
fuzzy neural network, and Kalman filter. The adaptive systems are self-designing ones that can be au-
tomatically adjusted in changing systems. As batteries have been affected by many chemical factors and 
have nonlinear SOC, adaptive systems offer good solution for SOC estimation.

Vehicle-to-Grid: Vehicle-to-grid (V2G) systems represent a means by which power capacity in 
parked vehicles can be used to generate electricity for the grid. In vehicle-to-grid (V2G) concept, an 
electric vehicle acts both as a load and power source in smart grid environment. A V2G-capable vehicle 
offers reactive power support, active power regulation, tracking of variable renewable energy sources, 
load balancing, and current harmonic filtering. These technologies can enable ancillary services, such 
as voltage and frequency control and spinning reserve. Success of the V2G concept depends on stan-
dardization of requirements and infrastructure decisions, battery technology, and efficient and smart 
scheduling of limited fast-charge infrastructure. The benefits of V2G technologies can only be realized 
if a combination of infrastructure, including regulation, metering and wiring in buildings, electric-drive 
vehicles, and fuel production and distribution systems are all available.
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APPENDIX: NOMENCLATURE

PHEVs: Plug-in hybrid electric vehicles.
EPRI: Electric power research institute.
V2G: Vehicle-to-grid.
SoC: State-of-charge.
ICEV: Internal combustion engine vehicles.
AEVs: All-electric vehicles.
HEVs: Hybrid electric vehicles.
AER: All-electric-range.
( )iI k :  Charging current over  t∆ .

( )iV k :  Charging voltage over  t∆ .

( ),r iC k :  Remaining battery capacity required to be filled for i -th PHEV at time step k .

iC :  Rated battery capacity of the i -th PHEV (Farad).
( ),r iT k :  Remaining time for charging the i -th PHEV at time step k .

( )iD k : Price difference.

( ) iw k :  Charging weighting term of the i -th PHEV at time step.

( )1+iSoC k :  State-of-charge of the i -th PHEV at time step k 1+ .

,i maxSoC :  User-defined maximum battery SoC  limit for the i -th PHEV.
J (k): Objective function.

utilityP : Power available from the utility.

,i maxP : Maximum power that can be absorbed by a specific PHEV.
η : Overall charging efficiency of the charging station.
∆t : Total charging time.
PSO: Particle swarm optimization.
GSA: Gravitational search algorithm.

ajM : Active gravitational mass related to agent  j .

pi M : Passive gravitational mass related to agent  i .

( )ij
R t :  Euclidian distance between two agents i  and j .

ii
M :  Mass of the object  i .

i
rand : Random number with interval [0, 1].
pbest : Best value achieved by the individual.

gbest: Best value of the group.
t
i

x :  Current position of particle i  at iteration t .
EMS: Energy management strategy.
EVSE: Electric vehicle supply equipment.
DG: Distributed generation.
DSM: Demand side management.
SMDP: Stochastic semi-Markov decision.


