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Abstract Transportation electrification has undergone major changes since the last decade. Suc-

cess of smart grid with renewable energy integration solely depends upon the large-scale penetration

of plug-in hybrid electric vehicles (PHEVs) for a sustainable and carbon-free transportation sector.

One of the key performance indicators in hybrid electric vehicle is the State-of-Charge (SoC) which

needs to be optimized for the betterment of charging infrastructure using stochastic computational

methods. In this paper, a newly emerged Accelerated particle swarm optimization (APSO) tech-

nique was applied and compared with standard particle swarm optimization (PSO) considering

charging time and battery capacity. Simulation results obtained for maximizing the highly nonlinear

objective function indicate that APSO achieves some improvements in terms of best fitness and

computation time.
� 2015 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The vehicular network recently accounts for around 25% of
CO2 emissions and over 55% of oil consumption around the
world [1]. Carbon dioxide is the primary greenhouse gas
emitted through human activities such as combustion of fossil

fuels (coal, natural gas, and oil) for energy and transportation.
Several researchers have proved that a great amount of reduc-
tions in greenhouse gas emissions and the increasing depen-
dence on oil could be accomplished by electrification of

transport sector [2]. Certainly, the adoption of hybrid electric
vehicles (HEVs) has brought significant market success over
the past decade. Vehicles can be classified into three groups:

internal combustion engine vehicles (ICEV), hybrid electric
vehicles (HEV) and all-electric vehicles (AEV) [3]. Recently
introduced plug-in hybrid electric vehicles (PHEVs) have the

potential to increase the total fuel efficiency because of a large
size on board battery charged directly from the traditional
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Nomenclature

PHEVs plug-in hybrid electric vehicles

EPRI electric power research institute
V2G vehicle-to-grid
SoC State-of-Charge
ICEV internal combustion engine vehicles

AEVs all-electric vehicles
HEVs hybrid electric vehicles
AER all-electric-range

IiðkÞ charging current over Dt
Cr;iðkÞ remaining battery capacity required to be filled for

i-th PHEV at time step k

Ci rated battery capacity of the i-th PHEV
(Farad)

Tr;iðkÞ remaining time for charging the i-th PHEV at time

step k
DiðkÞ price difference
wiðkÞ charging weighting term of the i-th PHEV at time

step

SoCiðkþ 1Þ State-of-Charge of the i-th PHEV at time step
k + 1

SoCi;max user-defined maximum battery SoC limit for the

i-th PHEV
Putility power available from the utility
Pi;max maximum power that can be absorbed by a specific

PHEV
g overall charging efficiency of the charging station

Figure 1 Voltage of Lithium-ion cell versus State-of-Charge [28].
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electric grid, that supports the automobiles to function unin-
terruptedly in ‘‘All-Electric-Range” (AER). All-electric vehi-
cles or AEV is a vehicle using electric power as only sources
to move the vehicle [4]. PHEVs integrated with smart grid will

possess all of recently introduced strategies. Hence, widely
stretched acceptance of PHEVs should play an important role
in the sustainable energy addition into existing power grid sys-

tems [5]. Effective mechanisms and systems for smart grid
expertise are needed in order to solve very diverse complica-
tions such as energy management, cost reduction, and efficient

charging infrastructure with different objectives and system
constraints [6].

According to EPRI – Electric Power Research Institute,
almost 62% of entire United States (US) transport will com-

prise of PHEVs within the year 2050 [7]. Large numbers of
PHEVs have the capability to make threats to the stability of
the power system. For example, in order to avoid disturbance

when several thousand PHEVs are introduced into the system
over a small period of time, the load on the power grid will
need to be managed very carefully. One of the main targets

is to facilitate the proper communication between the power
grid and the PHEV. For the maximization of customer con-
tentment and minimization of burdens on the grid, a compli-

cated control appliance will need to be addressed in order to
govern multiple battery loads from a numbers of PHEVs prop-
erly [8]. The overall demand arrangement will have a signifi-
cant impact on the power production due to variances in the

requirements of the electric vehicles parked in the parking deck
at a specific time [9]. Proper management can ensure strain
minimization of the grid and enhance the transmission and

generation of electric power supply. The control of PHEV
charging depending on the locations can be classified into
two groups: household charging and public charging. The pro-

posed optimization focuses on the public charging station for
plug-in vehicles because most of PHEV charging is expected
to take place in public charging locations [10].

Widespread penetration of electric vehicles in the vehicular
market is influenced by the systematized charging infrastruc-
tures. The power requirement from these new loads actually
put extra burden on the existing power systems [12]. For this,

some strategies have been proposed by the researchers [13,14]
in order to facilitate the PHEV charging infrastructures.
Charging infrastructures are required to be constructed at
offices, marketplaces and near households. Authors [15] pro-
posed the requirement of constructing innovative smart charg-
ing infrastructures with efficient communication networks
among the utilities accompanied by well-equipped control

infrastructures in order to achieve proper grid stability as well
as proper utilization of energy. Moreover, adequate energy
storage facilities, cost reduction, Quality of Services (QoS)

and optimum power allocation to intelligent charging infras-
tructures are in progress [16]. As a result, development of
dependable, effective, vigorous and cost-effective charging

infrastructures is ongoing. Numerous techniques and
approaches have proposed for placement of charging infras-
tructures for PHEVs [17].

State-of-Charge (SoC) is one of the significant constraints

for precise charging [11]. A graph of a distinctive Lithium-
ion cell voltage versus State-of-Charge is presented in Fig. 1.
The figure indicates that the slope of the curve below 20%

and above 90% is high enough to result in a significant voltage
difference to be depended on by measurement circuits and
charge balancing control. Accelerated PSO was developed by

Yang [18] at Cambridge University in 2007 in order to acceler-
ate the convergence of the algorithm that is to use the global
best only. PSO and APSO-based optimizations have already

been studied by the researchers for optimal design of substa-
tion grounding grid [19], non-convex optimization [20,21], per-
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formance analysis of MIMO radar waveform [22], design of
frame structures [23], dual channel speech enhancement [25],
synthesis gas production [26] and a faster path planner [27].

Specifically, we are investigating the use of the Accelerated
particle swarm optimization (APSO) method for developing
real-time and large-scale optimizations for allocating power.

The paper is structured as follows: Next section will define
the particular optimization problem that is trying to be solved.
Optimization fitness function and constraints, mathematical

construction of proposed algorithm and assessment of the
APSO technique explain how the particular algorithm solves
our stated optimization problems. The experimental results
and simulation analysis are presented then with a broad com-

parison with stand-alone PSO. Finally, conclusions and future
research directions are drawn.

2. Problem statement

Smart charging of PHEV considers energy demand, price of
energy and surplus capacity [6].

For creating the fitness function let us assume a charging
infrastructure with P, total power capacity. Overall N quanti-
ties of PHEVs require to be served in whole day (24 h). The

entire charging system should facilitate PHEVs to leave the
charging infrastructure before the estimated leaving time for
creating the structure more efficient. It is worth to mention

that, each PHEV is regarded to be plugged-into the charging
station once. The main aim is to allocate power intelligently
for each PHEV coming to the charging station. The State-of-
Charge is the main parameter which needs to be maximized

in order to allocate power efficiently. For this, the fitness func-
tion considered in this paper is the maximization of average
SoC and thus allocates energy for PHEVs at the next time step.

Time of charging, present State-of-Charge (SoC) and energy
price are the three constraints taken into account in this paper
[8].

The fitness function is defined as follows:

Max JðkÞ ¼
X
i

wiðkÞSoCiðkþ 1Þ ð1Þ

wiðkÞ ¼ fðCr;iðkÞ;Tr;iðkÞ;DiðkÞÞ ð2Þ

Cr;iðkÞ ¼ ð1� SoCiðkÞÞ � Ci ð3Þ
where Cr,i(k) is the battery capacity (r= remaining) needed to
be filled for i no. of PHEV at time step k; Ci is the battery
capacity (rated) of the no. of PHEV; remaining time for charg-

ing a particular PHEV at time step k is expressed as Tr,i(k); the
price difference between the real-time energy price and the
price that a specific customer at the i no. of PHEV charger is

willing to pay at time step k is presented by Di(k); wi(k) is
the charging weighting term of the i no. of PHEV at time step
k (a function of charging time, present SoC and price of the

energy); SoCi(k + 1) is the state of charge of the i no. of PHEV
at time step k+ 1.

Weighting term denotes a gratuity proportional to features

of specific vehicles. For an example, if a PHEV has a lower
preliminary SoC and less time for charging is remaining, but
the driver is willing to give extra price, the charging system will
allocate more power to that particular vehicle battery charger:

wiðkÞa Capr;iðkÞ þDiðkÞ þ 1=Tr;iðkÞ
� � ð4Þ
Moreover, charging current is assumed to be fixed over
time period, Dt.

SoCiðkþ 1Þ ¼ SoCiðkÞ þ IiðkÞDt=Ci ð5Þ
Dt= The sample is usually defined by the operators of charg-

ing station whereas the charging current is denoted as Ii(k)
over period Dt.

The battery model is regarded as a capacitor circuit, where

Ci is the capacitance of battery (Farad). The model is defined
as

Ci � dVi

dt
¼ Ii ð6Þ

Therefore, over a small time interval, one can assume the
change of voltage to be linear,

Viðkþ 1Þ � ViðkÞ ¼ IiDt=Ci ð7Þ
As the decision variable used here is the allocated power to

the PHEVs, by replacing Ii(k) with Pi(k)

IiðkÞ ¼ PiðkÞ=0:5� ½ViðKþ 1Þ þ ViðkÞ� ð8Þ
Now, by substituting Ii(k) into (7) yields

Viðkþ 1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2PiðkÞDt=Ci þ V2

i ðkÞ
q

ð9Þ
Substituting (8) and (9) into (5) yields

SoCiðkþ 1Þ ¼ SoCiðkÞ þ PiðkÞDt=0:5Ci � ½ViðKþ 1Þ
þ ViðkÞ� ð10Þ

Finally, the fitness function finally becomes:

JðkÞ¼
X
i

wi � SoCiðkÞþ PiðkÞDt
0:5 �Ci �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2PiðkÞDt

Ci
þV2

i ðkÞ
q

þViðkÞ
h i

2
64

3
75

ð11Þ
The utility power (Putility) and the maximum absorbed

power (Pi,max) by a particular vehicle are the prime energy con-

straints in this research. The overall efficiency of a specific
charging station is designated as g. The efficiency of charging
is assumed to be fixed at any given duration from the system

point of view. SoCi,max is the maximum battery State-of-
Charge limit for i no. of vehicles. The i no. of battery charger
shifts to a standby mode when SoCi touches the values near to

SoCi,max. The overall charging system is transformed to the
state in three cases – (i) updates of system utility informations;
(ii) a new vehicle is just plugged-in; and (iii) Dt time period has

intermittently passed.
Table 1 shows all the fitness function parameters that were

tuned for performing the optimization. Here, a single parking
lot with the aggregation of distribution network-connected

PHEVs is considered. We make use of historical data for office
parking from the city of Livermore, CA [29]. There are three
types of parameters: fixed, variables and constraints in this

optimization problem. The different values for fixed and vari-
able parameters are taken from the previous works of Su [8–10].

3. Standard particle swarm optimization (PSO)

PSO is an evolutionary computation technique which is pro-
posed by Eberhart and Shi [30]. The PSO was inspired from

social behavior of bird flocking. It uses a number of particles



Table 1 Parameter settings of the fitness function.

Parameter Values

Fixed parameters Maximum power, Pi,max = 6.7 kW h

Charging station efficiency, g= 0.9

Total charging time, Dt = 20 min (1200 s)

Power allocation to each PHEV: 30 W

Variables 0.2 6 State-of-Charge (SoC) 6 0.8

Waiting time 6 30 min (1800 s)

16 kW h 6 battery capacity (Ci) 6 40 kW h

Constraints
P

iPiðkÞ 6 PutilityðkÞ � g
0 6 PiðkÞ 6 Pi;maxðkÞ
0 6 SoCiðkÞ 6 SoCi;max

0 6 SoCiðkþ 1Þ � SoCiðkÞ 6 DSoCmax

Primary population generation

Generate initial position and velocities randomly for all 

Find global best for t=0

Calculate particle velocity 

Calculate particle position

Meeting the final criteria?

Return best solution

No

Yes

Evaluate objective function for the position 

Find actual position for each particle 

End

Start

Figure 2 Flowchart of Accelerated particle swarm optimization

(APSO).
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(candidate solutions) which fly around in the search space to

find best solution. Meanwhile, they all look at the best particle
(best solution) in their paths. In other words, particles consider
their own best solutions as well as the best solution found so
far.

Each particle in PSO should consider the current position,
the current velocity, the distance to pbest, and the distance to
gbest in order to modify its position. PSO is initialized with a

group of random particles (solutions) and then searches for
optima by updating generations. In every iteration, each
particle is updated by following two ‘‘best” values. The first

one is the best solution (fitness) it has achieved so far.
(The fitness value is also stored.) This value is called ‘‘pbest”.
Another ‘‘best” value that is tracked by the particle swarm
optimizer is the best value, obtained so far by any particle in

the population. This best value is a global best and called
‘‘gbest”.

PSO was mathematically modeled as follows:

Vtþ1
i ¼wvti þ c1� rand�ðpbesti�xt

iÞþ c2� rand�ðgbest�xt
iÞ
ð12Þ

xtþ1
i ¼ xt

i þ Vtþ1
i ð13Þ

where vti is the velocity of particle i at iteration t, and w is a

weighting function usually used as follows:

x ¼ xmax � wmax � ðxmin=ItremaxÞItre ð14Þ
Appropriate values for xmin and wmax are 0.4 and 0.9.

Appropriate value ranges for c1 and c2 are 1–2, but 2 is most

appropriate in many cases. rand is a random number between
0 and 1, xt

i is the current position of particle i at iteration t,

pbesti is the pbest of agent i at iteration t and gbest is the best
solution so far. PSO algorithm works by simultaneously main-
taining several particles or potential solutions in the search

space. For each iteration of the algorithm, each particle is eval-
uated by the fitness function being optimized, based on the fit-
ness of that solution.

4. Accelerated particle swarm optimization (APSO)

In APSO, each member of the population is called a particle

and the population is called a swarm. Starting with a randomly
initialized population and moving in randomly chosen direc-
tions, each particle moves through the searching space and

remembers the best earlier positions, velocity and accelerations
of itself and its neighbors. Particles of a swarm communicate
good position, velocity and acceleration to each other as well
as dynamically adjust their own position, velocity and acceler-

ation derived from the best position of all particles. The
next step starts when all particles have been shifted. Finally,
all particles inclined to fly toward better positions over the

searching process until the swarm moves close to an optimum
of the fitness function. Fig. 2 shows the flowchart of APSO
method.

The standard PSO uses both the current global best g* and
the individual best xt

i . The reason of using the individual best is

mainly to increase the diversity in the quality solutions; how-
ever, this diversity can be simulated using some randomness.
Subsequently, there is no convincing reason for using the indi-

vidual best, unless the optimization problem of interest is mul-
timodal and highly nonlinear [25].

It is worth pointing out that, there is no need to deal with
initialization of velocity vectors. Therefore, the APSO is much

simpler. Comparing with many PSO variants, the APSO uses
only two parameters, and the mechanism is simple to under-
stand. In APSO for the optimization we have considered three

parameters position, velocity and acceleration for each swarm
particle, whereas in PSO only two parameters position and
velocity are considered for each particle [22]. In this algorithm

the swarms are the random sequence and rand positions are
generated. From these positions, the velocity and acceleration
are generated.
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4.1. The algorithm outline

The outline of Accelerated particle swarm optimization
(APSO) is given below:

A simplified version that could accelerate the convergence

of the algorithm is to use the global best only. Thus, in the
APSO [23,24], the velocity vector is generated by a simpler for-
mula as where randn is drawn from (0, 1) to replace the second
term. The update of the position is simply like (16).

Vtþ1
i ¼ Vt

i þ a � randnðtÞ þ b � ðg� � xt
iÞ ð15Þ

where randn is drawn from N (0, 1) and the update of the posi-
tion is like the standard PSO method. In order to increase the
convergence even further, the update of the position can be

written in a single step, as

xtþ1
i ¼ ð1� bÞxt

i þ bg� þ ar ð16Þ
In our simulation we use [31]

a ¼ 0:7t ð17Þ
Table 3 Average best fitness for PSO and APSO.

Average best fitness for PSO APSO

50 PHEVs 142.839 165.96509

100 PHEVs 171.102 182.93134

500 PHEVs 150.869 197.59083

1000 PHEVs 156.802 172.45284

Table 4 Computational time for PSO and APSO.

Computational time (s) PSO APSO

50 PHEVs 1.650 1.685

100 PHEVs 1.686 1.690

500 PHEVs 1.990 1.856

1000 PHEVs 2.398 2.141
4.2. APSO parameter settings

The typical values for this accelerated PSO are a � 0.1–0.4 and
b � 0.1–0.7; however, a � 0.2 and b � 0.5 are recommended
[19]. In general, any evolutionary search algorithm shows

improved performance with a relatively larger population.
However, a very large population will cost more in terms of fit-
ness function evaluations without producing significant

improvements. In this simulation, the population size is set
to 100. The parameter settings for APSO are demonstrated
in Table 2.

5. Simulation results and analysis

5.1. Results

The APSO and PSO techniques were simulated to achieve the
best fitness values of fitness function stated at Eq. (11). All the

simulations were run on the following computer configuration
stated below:

CPU: CoreTM i5-3470 M
Processor: 3.20 GHz
RAM: 4.00 GB and

Software: MATLAB version-R2013a.

Table 3 summarizes the simulation results for 50, 100, 500
and 1000 plug-in hybrid electric vehicles (PHEVs) respectively

for finding the maximum fitness value of fitness function J (k).
In order to evaluate the performance and show the efficiency
Table 2 APSO parameter settings.

Parameters Values

Size of the swarm 100

Maximum no. of steps 100

Alpha, a 0.2

Beta, b 0.5

Maximum iteration 100

Number of runs 30
and superiority of the proposed algorithm, we ran each sce-
nario total 30 times.

So it can be concluded that, APSO outperformed PSO in

terms of Average best fitness. Starting from 50 numbers of
PHEVs up to 1000 PHEVs, APSO shows better fitness value
than PSO.

Table 4 shows the computational time requirement for PSO
and APSO methods. As the number of PHEVs increased from
100 to 500 and 1000, APSO technique shows better result than

standard PSO method in terms of computational time.
Fig. 3 shows the convergence behavior (iteration vs. fitness

value) of APSO technique. It can be apparently seen that
although the algorithm has been set to run for maximum 100

iterations, the fitness value converges after 10 iterations and
becomes stable. So, there is an early convergence which may
cause the fitness function to trap into local minima. This can

be avoided by increasing the size of swarm and hence the com-
putational time will also be increased as well. As a result, a
trade-off should be taken into consideration between the

proper convergence and computational time.
Figs. 4–7 show the simulation results for 50, 100, 500 and

1000 plug-in hybrid electric vehicles (PHEVs) respectively for

finding the maximum fitness value of fitness function J. In
order to evaluate the performance and show the efficiency
Figure 3 Iteration vs. fitness value, J (k) for APSO (100

PHEVs).
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and superiority of the proposed algorithm, we ran each sce-
nario total 30 times. Actually, here ‘Number of steps’ means
total number of time steps of the APSO optimization algo-

rithm and ‘number of iterations’ term is used for obtaining
successively closer approximations to the solution of our stated
problem.

For Fig. 4 (50 PHEVs), the maximum best fitness and min-
imum best fitness were 469.7489 and 7.6478 respectively.

The average best fitness is 165.9650. Fig. 5 depicts the max-

imum fitness value for 100 PHEVs. In this case, the maximum
best fitness and minimum best fitness were 679.7151 and 9.5076

respectively. The average best fitness is decreased into
182.9313.

For Fig. 6 (500 PHEVs), the maximum best fitness and
minimum best fitness were 541.4769 and 5.9631 respectively.
The average best fitness is 197.5908.

Fig. 7 depicts the maximum fitness value for 1000 PHEVs.
In this case, the maximum best fitness and minimum best fit-
ness were 678.9197 and 0.9963 respectively. The average best

fitness is decreased into 172.4528.
Now, from the aforesaid numerical data we can analyze the

simulation behavior of APSO method. As it is a population-

based optimization techniques and the fitness function is
highly nonlinear, so the fitness values fluctuate for each itera-
tion [32–35]. But, the maximum best fitness remains in the
range of 450–700 and the minimum best fitness remains in
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Figure 4 Fitness value vs. no. of runs (50 PHEVs).
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Table 5 Fitness evaluation of APSO.

Fitness function

J (k)

50

PHEVs

100

PHEVs

500

PHEVs

1000

PHEVs

Max. best fitness 469.7489 679.7151 541.4769 678.9197

Avg. best fitness 165.9650 182.9313 197.5908 172.4528

Min best fitness 7.6478 9.5076 5.9631 0.9963
the range of 1–10. Table 5 summarizes the result. From that
it can be concluded that, average best fitness remains almost
in similar pattern for four (04) different scenarios.

5.2. Comparison between PSO and APSO

Table 6 illustrates the advantages and disadvantages of both

APSO and PSO techniques for solving optimization problems.
For solving this particular optimization problem, we faced
some issues which will be discussed in this section.

Although APSO needs more parameters tuning compared
to Standard PSO method but when the number of PHEVs
increases, APSO takes less time than PSO. This characteristic
makes APSO very efficient to solve this particular optimization
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problem. In APSO, the velocity vector ensures local exploita-
tion capability. Moreover, the disadvantage of APSO is that
it suffers early convergences in primary stages.

Finally, from Fig. 8 we can come into a conclusion that,
APSO performs better than PSO in terms of Average best fit-
ness for up to 1000 Plug-in hybrid electric vehicles.

6. Discussion

6.1. Computational cost

For real-life problems the computational cost of a full evalua-

tion of the fitness function can easily become the dominant
computational cost. This computational cost can have the
effect of making the time for the swarm to converge slowly

[36,37]. In this APSO method, the computational cost is mod-
erate as compared to standard PSO method because of using
acceleration factors, a and b.

6.2. Stopping criteria

Since an iterative method computes successive approximations
to the solution of a system, stopping criteria are needed to
Table 6 Advantages and disadvantages of PSO and APSO.

Optimization

method

Advantages Disadvantages

PSO Less parameters

tuning

Low quality solution

Easy constraint Needs memory to update

velocity

Good for multi-

objective

optimization

Early convergence

APSO Very efficient Suffers from early

convergence in the primary

stages

High quality

solution

Local exploitation

capability
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Figure 8 Average best fitness vs. no. of PHEVs (APSO and

PSO).
determine when to stop the iteration. The maximum number
of iteration was set to 100 for this optimization.

6.3. Robustness

The robustness of the algorithm is examined in terms of the
variability of the final solutions from each set of experiments

[38]. From Fig. 4 it is clear that, APSO algorithm is not too
robust as the maximum, average and minimum fitness values
show different values for different number of PHEVs. By tun-

ing the parameters such as a and b will improve the robustness
of the optimization which is beyond the scope of this research.

6.4. Computational complexity

Computational complexity refers to the various problems
encountered for solving an optimization algorithm, such as
early convergence, high computational time, trapping in local

optima, and unable to reach global optima/minima [39,40].
In this optimization problem, we encounter premature conver-
gences. Moreover, if the size of swarm is very small, then the

algorithm traps in local minima. In order to avoid this, we
started our simulation using standard swarm size which is
100. In future, more swarm size will be considered in order

to find global solution.

7. Conclusion and recommendations

In this paper, Accelerated particle swarm optimization
(APSO)-based optimization was implemented for optimally
distributing State-of-Charge (SoC) to the PHEVs entering

into the charging station. A sophisticated controller will need
to be designed in order to allocate power to PHEVs appropri-
ately. For this wake, the applied algorithm in this paper is a
step toward real-life implementation of such controller for

PHEV Charging Infrastructures. Here, four (04)
different numbers of PHEVs were considered for MATLAB
Simulation and then obtained results were compared with

PSO in terms of average best fitness and computational time.
Proper charging infrastructure management can assist the lar-
ger participation of PHEVs. At the same time, researchers

should try to improve available device mechanism for the
infrastructure with a view to simplify future PHEVs
dispersion in roads and highways. In future, more
vehicles should be considered for intelligent power allocation

strategy as well as hybrid versions of PSO should be
applied to ensure higher fitness value and low computational
time.
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