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Recent researches towards the use of green technologies to reduce pollution and higher penetration of renewable energy
sources in the transportation sector have been gaining popularity. In this wake, extensive participation of plug-in hybrid electric
vehicles (PHEVs) requires adequate charging allocation strategy using a combination of smart grid systems and smart charging
infrastructures. Daytime charging stations will be needed for daily usage of PHEVs due to the limited all-electric range. Intelligent
energy management is an important issue which has already drawn much attention of researchers. Most of these works require
formulation ofmathematical models with extensive use of computational intelligence-based optimization techniques to solvemany
technical problems. In this paper, gravitational search algorithm (GSA) has been applied and compared with another member
of swarm family, particle swarm optimization (PSO), considering constraints such as energy price, remaining battery capacity,
and remaining charging time. Simulation results obtained for maximizing the highly nonlinear objective function evaluate the
performance of both techniques in terms of best fitness.

1. Introduction

The vehicular network recently accounts for around 25% of
CO
2
emissions and over 55% of oil consumption around the

world [1]. Carbon dioxide (CO
2
) is the primary greenhouse

gas emitted through human activities like combustion of fos-
sil fuels (coal, natural gas, and oil) for energy and transporta-
tion. Several researchers have proved that a great amount of
reductions in greenhouse gas emissions and the increasing
dependence on oil could be accomplished by electrification
of transport sector [2]. Indeed, the adoption of hybrid electric
vehicles (HEVs) has brought significant market success over
the past decade. Vehicles can be classified into three groups:
internal combustion engine vehicles (ICEVs), hybrid electric
vehicles (HEVs), and all-electric vehicles (AEVs) [3]. Plug-
in hybrid electric vehicles (PHEVs) which are very recently
introduced promise to boost up the overall fuel efficiency

by holding a higher capacity battery system, which can be
directly charged from traditional power grid system that
helps the vehicles to operate continuously in “all-electric
range” (AER). All-electric vehicle or AEV is a vehicle using
electric power as the only source to move the vehicle [4].
Plug-in hybrid electric vehicles with a connection to the
smart grid can possess all of these strategies. Hence, the
widely extended adoption of PHEVs might play a significant
role in the alternative energy integration into traditional
grid systems [5]. There is a need of efficient mechanisms
and algorithms for smart grid technologies in order to solve
highly heterogeneous problems like energy management,
cost reduction, efficient charging infrastructure, and so forth
with different objectives and system constraints [6].

According to a statistics of Electric Power Research
Institute (EPRI), about 62% of the entire United States (US)
vehicle will comprise PHEVs within the year 2050 [7].
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Moreover, there is an increasing demand to implement this
technology on the electric grid system. Large numbers of
PHEVs have the capability to threaten the stability of the
power system. For example, in order to avoid interruption
when several thousand PHEVs are introduced into the
system over a short period of time, the load on the power
grid will need to be managed very carefully. One of the
main targets is to facilitate the proper interaction between
the power grid and the PHEV. For the maximization of
customer satisfaction and minimization of burdens on the
grid, a complicated control mechanism will need to be
addressed in order to govern multiple battery loads from
a number of PHEVs appropriately [8]. The total demand
pattern will also have an important impact on the electricity
industry due to differences in the needs of the PHEVs parked
in the deck at certain time [9]. Proper management can
ensure strain minimization of the grid and enhance the
transmission and generation of electric power supply. The
control of PHEV charging depending on the locations can
be classified into two groups: household charging and public
charging. The proposed optimization focuses on the public
charging station for plug-in vehicles because most of PHEV
charging is expected to take place in public charging locations
[10].

Wide penetration of PHEVs in the market depends on
a well efficient charging infrastructure. The power demand
from this new load will put extra stress on the traditional
power grid [11]. As a result, a good number of PHEV charging
infrastructures with appropriate facilities are essential to be
built for recharging electric vehicles; for this some strategies
have been proposed by the researchers [12, 13]. Charging sta-
tions are needed to be built at workplaces, markets/shopping
malls, and home. In [14], authors proposed the necessity of
building new smart charging station with effective commu-
nication among utilities along with substation control infras-
tructure in viewof grid stability andproper energy utilization.
Furthermore, assortment of charging stations with respect to
charging characteristics of different PHEVs traffic mobility
characteristics, sizeable energy storage, cost minimization,
quality of services (QoS), and optimal power of intelligent
charging station are underway [15]. Thus, evolution of reli-
able, efficient, robust, and economical charging infrastructure
is underway. In this wake, numerous techniques andmethods
have been proposed for deployment of charging station for
PHEVs [16, 17].

One of the important constraints for accurate charging
is state of charge (SoC). Charging algorithm can accurately
be managed by the precise state of charge estimation [18].
An approximate graph of a typical lithium-ion cell voltage
versus SoC is shown in Figure 1. The figure indicates that the
slope of the curve below 20% and above 90% is high enough
to result in a detectable voltage difference to be relied on
by charge balancing control and measurement circuits [19].
There is a need of in-depth study onmaximization of average
SoC in order to facilitate intelligent energy allocation for
PHEVs in a charging station. Gravitational search algorithm
(GSA) is one of the newest heuristic algorithms introduced by
Rashedi et al. [20]. GSA algorithm is also amember of swarm
intelligence family which is inspired by the well-known law of
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Figure 1: Li-ion cell voltage versus state of charge [24].

gravity and interactions between the masses and implements
Newtonian gravity and the laws of motion [21–23].

GSA-based optimization has already been used by the
researchers for postoutage bus voltage magnitude calcula-
tions, economic dispatch with valve-point effects, optimal
sizing and suitable placement for distributed generation
(DG) in distribution system, optimization of synthesis gas
production [25], rectangular patch antenna [26], orthogonal
array based performance improvement [27], solving thermal
unit commitment (UC) problem, and finding out optimal
solution for optimal power flow (OPF) problem in a power
system [28]. Specifically, we are investigating the use of the
gravitational search algorithm (GSA) method for developing
real-time and large-scale optimizations for allocating power.

The remainder of this paper is organized as follows: next
section will describe the specific problem that we are trying
to solve. We will provide the optimization objective and
constraints and mathematical formulation of our algorithm,
review the GSA method, and describe how the algorithm
works for our optimization problems. The simulation results
and analysis are then presented. Finally, conclusions and
future directions are drawn.

2. Problem Formulation

The idea behind smart charging is to charge the vehicle when
it ismost beneficial such aswhen the electricity price and total
power demand remain lowest or there is excess capacity of
generated power [24].

Suppose there is a charging station with the capacity
of total power 𝑃. Total 𝑁 numbers of PHEVs need to be
charged within 24 hours of time interval. The proposed
system should allow PHEVs to leave the charging station
before their expected leaving time for making the system
more effective. It is worth to mention that each PHEV is
regarded to be plugged in to the charging station once. The
main aim is to allocate power intelligently for each PHEV
coming to the charging station. The state of charge is the
main parameter which needs to be maximized in order to
allocate power effectively. For this, the objective function
considered in this paper is the maximization of average SoC
and thus allocates energy for PHEVs at the next time step.
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The constraints considered are charging time, present SoC,
and price of the energy.

The objective function is defined as

max 𝐽 (𝑘) = ∑
𝑖

𝑤
𝑖
(𝑘) SoC

𝑖
(𝑘 + 1) ,

𝑤
𝑖
(𝑘) = 𝑓 (𝐶

𝑟,𝑖
(𝑘) , 𝑇

𝑟,𝑖
(𝑘) , 𝐷

𝑖
(𝑘)) ,

𝐶
𝑟,𝑖
(𝑘) = (1 − SoC

𝑖
(𝑘)) ∗ 𝐶

𝑖
,

(1)

where𝐶
𝑟,𝑖
(𝑘) is the battery capacity (remaining) needed to be

filled for 𝑖 number of PHEV at time step 𝑘; 𝐶
𝑖
is the battery

capacity (rated) of the 𝑖 number of PHEV; remaining time
for charging a particular PHEV at time step 𝑘 is expressed
as 𝑇
𝑟,𝑖
(𝑘); the price difference between the real-time energy

price and the price that a specific customer at the 𝑖 number of
PHEV charger is willing to pay at time step 𝑘 is presented by
𝐷
𝑖
(𝑘); 𝑤

𝑖
(𝑘) is the charging weighting term of the 𝑖 number

of PHEV at time step 𝑘 (a function of charging time, present
SoC, and price of the energy); SoC

𝑖
(𝑘+1) is the state of charge

of the 𝑖 number of PHEV at time step 𝑘 + 1.
Here, the weighting term indicates a bonus proportional

to the attributes of a specific PHEV. For example, if a PHEV
has a lower initial SoC and less charging time (remaining),
but the driver is eager to pay a higher price, the system will
provide more power to this particular PHEV battery charger:

𝑤
𝑖
(𝑘) 𝛼 [Cap

𝑟,𝑖
(𝑘) + 𝐷

𝑖
(𝑘) +

1

𝑇
𝑟,𝑖

(𝑘)] . (2)

The charging current is also assumed to be constant over Δ𝑡:

[SoC
𝑖
(𝑘 + 1) − SoC

𝑖
(𝑘)] ⋅ Cap

𝑖
= 𝑄
𝑖
= 𝐼
𝑖
(𝑘) Δ𝑡,

SoC
𝑖
(𝑘 + 1) = SoC

𝑖
(𝑘) +

𝐼
𝑖
(𝑘) Δ𝑡

Cap
𝑖

,

(3)

where the sample time Δ𝑡 is defined by the charging station
operators and 𝐼

𝑖
(𝑘) is the charging current over Δ𝑡.

The batterymodel is regarded as a capacitor circuit, where
𝐶
𝑖
is the capacitance of battery (Farad). The model is defined

as

𝐶
𝑖
⋅
𝑑𝑉
𝑖

𝑑𝑡
= 𝐼
𝑖
. (4)

Therefore, over a small time interval, one can assume the
change of voltage to be linear:

𝐶
𝑖
⋅
[𝑉
𝑖
(𝑘 + 1) − 𝑉

𝑖
(𝑘)]

Δ𝑡
= 𝐼
𝑖
,

𝑉
𝑖
(𝑘 + 1) − 𝑉

𝑖
(𝑘) =

𝐼
𝑖
Δ𝑡

𝐶
𝑖

.

(5)

As the decision variable used here is the allocated power
to the PHEVs, by replacing 𝐼

𝑖
(𝑘) with 𝑃

𝑖
(𝑘) the objective

function finally becomes

𝐽 (𝑘) = ∑𝑤
𝑖
⋅ [

[

SoC
𝑖
(𝑘) + (2𝑃

𝑖
(𝑘) Δ𝑡)

× (0.5 ⋅ 𝐶
𝑖
⋅ [√

2𝑃
𝑖
(𝑘) Δ𝑡

𝐶
𝑖

+ 𝑉
2

𝑖
(𝑘)

+𝑉
𝑖
(𝑘) ])

−1

]
]

]

.

(6)

2.1. SystemConstraints. Possible real-world constraints could
include the charging rate (i.e., slow, medium, and fast), the
time that the PHEV is connected to the grid, the desired
departure SOC, the maximum electricity price that a user
is willing to pay, and certain battery requirements. Further-
more, the available communication bandwidth could limit
sampling time, which would have effects on the processing
ability of the vehicle.

Power obtained from the utility (𝑃utility) and the maxi-
mum power (𝑃

𝑖,max) absorbed by a specific PHEV are the
primary energy constraints being considered in this paper.
The power demand of a PHEV/PEV cannot exceed the rated
power output of the battery charger:

∑

𝑖

𝑃
𝑖
(𝑘) ≤ 𝑃utility (𝑘) × 𝜂,

0 ≤ 𝑃
𝑖
(𝑘) ≤ 𝑃

𝑖,max (𝑘) .

(7)

The overall charging efficiency of a particular charging
infrastructure is described by 𝜂. From the system point of
view, charging efficiency is supposed to be constant at any
given time step. Maximum battery SoC limit for the 𝑖 number
of PHEV is SoC

𝑖,max. When SoC
𝑖
reaches the values close to

SoC
𝑖,max, the 𝑖 number of battery charger shifts to a standby

mode. The state of charge ramp rate is confined within limits
by the constraint ΔSoCmax. To accommodate the system
dynamics, the energy scheduling is updated when when (i)
system utility data is updated; (ii) a new PHEV is plugged
in, and (iii) time period Δ𝑡 has periodically passed. Table 1
shows all the objective function parameters that were tuned
for performing the optimization.

Energy allocation to PHEV charging station is subjected
to various constraints as mentioned in the problem formu-
lation section. Different constraints make the entire search
space limited to a particular suitable region. So, a powerful
optimization algorithm should be implemented in order to
achieve high quality solutions with a stable convergence rate.

3. Gravitational Search Algorithm

GSA is an optimization method which has been introduced
by Rashedi et al. in the year of 2009 [20]. In GSA, the
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Table 1: Parameter settings of the objective function.

Parameter Values

Fixed
parameters

Maximum power, 𝑃
𝑖,max = 6.7 kWh

Charging station efficiency, 𝜂 = 0.9
Total charging time, Δ𝑡 = 20 minutes
(1200 seconds)
Power allocation to each PHEV: 30W

Variables

0.2 ≤ state of charge (SoC) ≤ 0.8
Waiting time ≤ 30 minutes (1800
seconds)
16 kWh ≤ battery capacity (𝐶

𝑖
) ≤

40 kWh

Constraints

∑

𝑖

𝑃
𝑖
(𝑘) ≤ 𝑃utility (𝑘) × 𝜂

0 ≤ 𝑃
𝑖
(𝑘) ≤ 𝑃

𝑖,max (𝑘)

0 ≤ SoC
𝑖
(𝑘) ≤ SoC

𝑖,max

0 ≤ SoC
𝑖
(𝑘 + 1) − SoC

𝑖
(𝑘) ≤ ΔSoCmax

specifications of each mass (or agent) are four in total, which
are inertial mass, position, active gravitational mass and
passive gravitational mass. The position of the mass presents
a solution of a particular problem and masses (gravitational
and inertial) are obtained by using a fitness function.GSA can
be considered as a collection of agents (candidate solutions),
whose masses are proportional to their value of fitness
function. During generations, all masses attract each other
by the gravity forces between them. A heavier mass has the
bigger attraction force. Therefore the heavier masses which
are probably close to the global optimum attract the other
masses proportional to their distances.

3.1. Law of Gravity. The law states that particles attract each
other and the force of gravitation between two particles is
directly proportional to the product of their masses and
inversely proportional to the distance between them.

3.2. Law of Motion. The law states that the present velocity
of any mass is the summation of the fraction of its previous
velocity and the velocity variance. Variation in the velocity
or acceleration of any mass is equal to the force divided by
inertia mass.

The gravitational force is expressed as follows:

𝐹
𝑑

𝑖𝑗
(𝑡) = 𝐺 (𝑡)

𝑀
𝑝𝑖
(𝑡) × 𝑀

𝑎𝑗
(𝑡)

𝑅
𝑖𝑗
(𝑡) + 𝜀

(𝑥
𝑑

𝑗
(𝑡) − 𝑥

𝑑

𝑖
(𝑡)) , (8)

where𝑀
𝑎𝑗
is the active gravitational mass related to agent 𝑗,

𝑀
𝑝𝑖
is the passive gravitational mass related to agent 𝑖, 𝐺(𝑡)

is gravitational constant at time 𝑡, 𝜀 is a small constant, and
𝑅
𝑖𝑗
(𝑡) is the Euclidian distance between two agents 𝑖 and 𝑗.

The 𝐺(𝑡) is calculated as follows:

𝐺 (𝑡) = 𝐺
0
× exp(−𝛼 × iter

max iter
) , (9)

where 𝛼 and𝐺
0
are descending coefficient and primary value,

respectively, and current iteration and maximum number of

iterations are expressed as iter and max iter. In a problem
space with the dimension 𝑑, the overall force acting on agent
𝑖 is estimated as the following equation:

𝐹
𝑑

𝑖
(𝑡) =

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

rand
𝑗
𝐹
𝑑

𝑖𝑗
(𝑡) , (10)

where rand
𝑗
is a random number with interval [0, 1]. From

law of motion we know that an agent’s acceleration is directly
proportional to the resultant force and inverse of its mass, so
the acceleration of all agents should be calculated as follows:

ac𝑑
𝑖
(𝑡) =

𝐹
𝑑

𝑖
(𝑡)

𝑀
𝑖𝑖
(𝑡)
, (11)

where 𝑡 is a specific time and𝑀
𝑖𝑖
is the mass of the object 𝑖.

The velocity and position of agents are calculated as follows:

vel𝑑
𝑖
(𝑡 + 1) = rand

𝑖
× vel𝑑
𝑖
(𝑡) + ac𝑑

𝑖
(𝑡) , (12)

𝑥
𝑑

𝑖
(𝑡 + 1) = 𝑥

𝑑

𝑖
(𝑡) + vel𝑑

𝑖
(𝑡 + 1) , (13)

where rand
𝑖
is a random number with interval [0, 1].

Gravitational and inertia masses are simply calculated
by the fitness evaluation. A heavier mass means a more
efficient agent. This means that better agents have higher
attractions and walk more slowly. Assuming the equality
of the gravitational and inertia mass, the values of masses
are calculated using the map of fitness. We update the
gravitational and inertial masses by the following equations:

𝑀
𝑎𝑖
= 𝑀
𝑝𝑖
= 𝑀
𝑖𝑖
= 𝑀
𝑖
, 𝑖 = 1, 2, . . . , 𝑁. (14)

In gravitational search algorithm, all agents are initialized
first with random values. Each of the agents is a candidate
solution. After initialization, velocities for all agents are
defined using (12). Moreover, the gravitational constant,
overall forces, and accelerations are determined by (9), (10),
and (11), respectively. The positions of agents are calculated
using (13). At the end, GSAwill be terminated bymeeting the
stopping criterion of maximum 100 iterations.The parameter
settings for GSA are demonstrated in Table 2. Moreover, GSA
flowchart is shown in Figure 2.

4. Simulation Results and Analysis

The GSA algorithm was applied to find out global best
fitness of the objective function (Algorithm 1). All the cal-
culations were run on an Intel (R) Core i5-3470M CPU@
3.20GHz, 4.00GBRAM,Microsoft 32 bitWindows 7OS, and
MATLAB© R2013a.

Many optimization algorithms involve local search tech-
niques which can get stuck on local maxima. Most search
techniques strive to find a global maximum in the presence of
local maxima [29]. One of the most important characteristics
of GSA is its significant performance during exploration
process.The capability of an algorithm to extend the problem
in search gap is known as exploration while the ability of an
algorithm to recognize optimal solution near a favorable one
is exploitation [30, 31].
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Primary population generation

Global best and worst population update

Mass and acceleration calculation for each agent

Position and velocity update
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Figure 2: The GSA flowchart.
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Figure 3: Fitness value versus number of runs (50 PHEVs).
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Figure 4: Fitness value versus number of runs (100 PHEVs).
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Figure 5: Fitness value versus number of runs (300 PHEVs).

Table 2: GSA parameter settings.

Parameters Values
Primary parameter, 𝐺

0
100

Number of mass agents, 𝑛 100
Constant parameter, 𝛼 20
Constant parameter, 𝜀 .01
Power of “𝑅” 1
Maximum iteration 100
Number of runs 50

Figures 3, 4, 5, 6, and 7 show the simulation results for
50,100, 300,500, and 1000 plug-in hybrid electric vehicles
(PHEVs), respectively, for finding themaximum fitness value
of objective function J. In order to evaluate the performance
and show the efficiency and superiority of the proposed
algorithm, we ran each scenario 50 times in total.

For Figure 3 (50 PHEVs), the maximum best fitness and
minimum best fitness were 781.1267 and 0.2191, respectively.

The average best fitness is 158.8289. Figure 4 depicts
the maximum fitness value for 100 PHEVs. In this case,
the maximum best fitness and minimum best fitness were
579.3955 and 3.2523.The average best fitness is decreased into
139.7536.

For Figure 5 (300 PHEVs), the maximum best fitness and
minimum best fitness were 743.1251 and 2.3279, respectively.
The average best fitness is 172.4296.

Figure 6 depicts the maximum fitness value for 500
PHEVs. In this case, themaximumbest fitness andminimum
best fitness were 836.2707 and 0.9818.The average best fitness
is decreased into 152.36437.

Figure 7 shows the maximum fitness value for 1000
PHEVs. In this case, themaximumbest fitness andminimum
best fitness were 968.7652 and 7.2747. The average best fitness
is decreased into 161.52349.
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(1) Initialization of total𝑁mass agents randomly
(2) Computation of 𝐺(𝑡), Fitness (Best and Worst )
(3) For each of the agent 𝐼, evaluate:

(3.1) Fitness
𝑖

(3.2) Mass
𝑖

(3.3) Force of Mass
𝑖

(3.4) Acceleration of Mass
𝑖

(3.5) Mass
𝑖
velocity update

(3.6) New position of Agent
𝑖

If (Probability
𝑖
>Thershold)
{

If (Probability
𝑖
> Rand

𝑖
)

Then return Best Fitness
solution so far

Else
Modification of solution

}

(4) Failed to meet stopping criteria,
Go To Step 2, Else Stop

Algorithm 1
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Figure 6: Fitness value versus number of runs (500 PHEVs).

Finally, Table 3 summarizes the result. From that it can be
concluded that average best fitness remains almost in similar
pattern for five (05) different scenarios.

4.1. Performance Evaluation of GSA

4.1.1. Convergence Analysis. It can be apparently seen that
although the algorithm has been set to run for maximum 100
iterations, the convergence happened in about 20 iterations.
The result derived in this paper reveals that each object of
the standard GSA converges to a stable point. Here, the
assumption was that the gravitational and inertia masses are
the same. However, for some applications different values
for them can be used. A heavier inertia mass provides a
slower motion of agents in the search space and hence a more
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Figure 7: Fitness value versus number of runs (for 1000 PHEVs).

precise search [20]. On the contrary, a heavier gravitational
mass causes a higher attraction of agents. This allows a faster
convergence. The analysis results confirm the convergence
characteristics of GSA according to the given parameters
ranges of the algorithm. Figures 8, 9, 10, 11, and 12 show
the convergence behavior of GSA. The best fitness function
shows convergences after the same iterations (35 iterations)
for both 50 and 100 numbers of PHEVs while for 500 and
1000 numbers of PHEVs, it shows early convergence (before
20 iterations).

4.1.2. Robustness. The similar numeric patterns of average
best fitness show the robustness of GSAmethod.Thismethod
resists change without adapting its initial stable configuration
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Table 3: Fitness evaluation of GSA.

Fitness function For 50 PHEVs For 100 PHEVs For 300 PHEVs For 500 PHEVs For 1000 PHEVs
𝐽(𝑘)
Maximum best fitness 781.1267 579.3955 743.1251 836.2707 968.7652
Average best fitness 158.8289 139.7536 172.4296 152.36437 161.52349
Minimum best fitness 0.2191 3.2523 2.3279 0.9818 7.2747
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Figure 8: Best fitness versus iteration (50 PHEVs).
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Figure 9: Best fitness versus iteration (100 PHEVs).

for different cases (number of PHEVs) which proves GSA as
a robust algorithm.

4.1.3. Diversity. Here, the average best fitness gives different
values with the increment of PHEVs population. The rate
of convergence of mass agents in GSA is good through the
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Figure 10: Best fitness versus iteration (300 PHEVs).
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Figure 11: Best fitness versus iteration (500 PHEVs).

fast information flowing among mass agents, so its diversity
decreases very quickly in the successive iterations and leads
to a suboptimal solution.

4.1.4. Computational Cost. Here, we measured the computa-
tional cost of the algorithm in terms of total running time.
Table 6 shows the computational time ofGSA for five different
scenarios. Here, average CPU time is measured in seconds.
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Figure 12: Best fitness versus iteration (1000 PHEVs).

As GSA needs a good number of parameter tuning, the
computational cost increases with the increment of the total
number of PHEVs.

4.1.5. Quality of Solution. When an algorithm finds an opti-
mal solution to a given problem, one of the important factors
is speed and rate of convergence to the optimal solution.
For heuristics, the additional consideration of how close the
heuristic solution comes to optimal is generally the primary
concern of the researcher [32]. InGSA, the faster convergence
and better exploitation rate ensure good quality solution,
which is best fitness function.

For this optimization, the initial state of charge was
expressed as a random number which is continuous and
uniform between 0.2 and 0.6.The sample timewas set around
1200 seconds (20 minutes). The remaining charge time was
defined as continuous random number between 0 and 6
hours. The price according to customer’s choice for paying
the bill for electricity was expressed as a continuous random
number which is in between $1 and $2.

The capacity of the battery was assumed to be identical
for all vehicles.

4.2. Comparison between GSA and PSO. Particle swarm
optimization (PSO) with the parameter settings stated in
Table 4 was also performed for the same objective function
and compared with the performance of gravitational search
algorithm in terms of average best fitness. The swarm size
and maximum iterations were set exactly the same as those
of GSA algorithm for the comparison purpose. The values of
parameters c1, c2, and 𝑤 were set as standard values, 1.4, 1.4,
and 0.9, respectively.

From Figure 13 it is clear that gravitational search algo-
rithm outperformed particle swarm optimization in terms of
average best fitness. Starting from 50 numbers of PHEVs up
to 1000 PHEVs, GSA shows better fitness value than PSO.

Table 4: PSO parameter settings.

Parameters Values
Size of the swarm 100
Maximum number of steps 100
PSO parameter, 𝑐1 1.4
PSO parameter, 𝑐2 1.4
PSO inertia (𝑤) 0.9
Maximum iteration 100
Number of runs 50

Table 5: Summarizes the comparisons of GSA with PSO algorithm
in terms of average best fitness.

Average best fitness for PSO GSA
50 PHEVs 142.839 158.8289
100 PHEVs 171.102 182.3097
300 PHEVs 169.312 172.4296
500 PHEVs 150.869 152.36437
1000 PHEVs 156.802 161.52349

Table 6: Computational time for PSO and GSA.

Computational Time (sec.) PSO GSA
50 PHEVs 1.650 2.721
100 PHEVs 1.686 4.439
500 PHEVs 1.990 18.165
1000 PHEVs 2.398 36.275

Table 7 illustrates the advantages and disadvantages of
both GSA and PSO for solving different optimization prob-
lems.

It has been proven that gravitational search algorithm
has good ability to search for the global optimum, but it
suffers from slow searching speed in the last iterations [35].
Moreover, the inertia mass is against the motion and slows
the mass movement. Agents with heavy inertia mass move
slowly and hence search the space more locally. So, it can
be considered as an adaptive learning rate [34]. GSA is a
memory-less algorithm. However, it works competently like
the algorithmswithmemory.Our simulation results show the
good convergence rate of the GSA.

5. Conclusion and Recommendations

In this paper, gravitational search algorithm- (GSA-) based
optimization was performed in order to optimally allocate
power to each of the PHEVs entering into the charging
station. A sophisticated controller will need to be designed
in order to allocate power to PHEVs appropriately. For
this wake, the applied algorithm in this paper is a step
towards real-life implementation of such controller for PHEV
charging infrastructures.

Here, five (05) different numbers of PHEVs were con-
sidered for MATLAB© simulation and then obtained results
were compared with PSO in terms of average best fitness.The
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Table 7: Advantages and disadvantages of PSO and GSA.

Optimization
method Advantages Disadvantages

PSO

Less parameters tuning
Easy constraint

Good for multiobjective
optimization

[33]

Low quality solution
Needs memory to update velocity

Slow convergence rate

GSA
High quality solution
Good convergence rate

Local exploitation capability [34]

Needs more computational time
More parameters tuning
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Figure 13: Average best fitness versus number of PHEVs.

success of the electrification of transportation sector solely
depends on charging infrastructure. Only proper charging
control and infrastructure management can assure the larger
penetration of PHEVs.The researchers should try to develop
efficient control mechanism for charging infrastructure in
order to facilitate upcoming PHEVs penetration in highways.
In future, more vehicles should be considered for intelligent
power allocation strategy and improved versions of GSA and
hybrid swarm intelligence based methods should be applied
to ensure low computational cost.

Nomenclature and Acronyms

PHEVs: Plug-in hybrid electric vehicles
EPRI: Electric Power Research Institute
V2G: Vehicle to grid
SoC: State of charge
ICEVs: Internal combustion engine vehicles
AEVs: All-electric vehicles
HEVs: Hybrid electric vehicles
AER: All-electric range
𝐼
𝑖
(𝑘): Charging current over Δ𝑡

𝐶
𝑟,𝑖
(𝑘): Remaining battery capacity required to be

filled for 𝑖th PHEV at time step 𝑘
𝐶
𝑖
: Rated battery capacity of the 𝑖th PHEV

(Farad)
𝑇
𝑟,𝑖
(𝑘): Remaining time for charging the 𝑖th PHEV

at time step 𝑘
𝐷
𝑖
(𝑘): Price difference

𝑤
𝑖
(𝑘): Charging weighting term of the 𝑖th PHEV

at time step
SoC
𝑖
(𝑘 + 1): State of charge of the 𝑖th PHEV at time step

𝑘 + 1

SoC
𝑖,max: User-defined maximum battery SoC limit

for the 𝑖th PHEV
𝑃utility: Power available from the utility
𝑃
𝑖,max: Maximum power that can be absorbed by a

specific PHEV
𝜂: Overall charging efficiency of the charging

station.
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