
  

 

Abstract— Any kind of visual information is encoded in 
terms of patterns of neural activity occurring inside the brain.  
Decoding neural patterns or its classification is a challenging 
task. Functional magnetic resonance imaging (fMRI) and 
Electroencephalography (EEG) are non-invasive neuroimaging 
modalities to capture the brain activity pattern in term of 
images and electric potential respectively. To get higher 
spatiotemporal resolution of human brain from these two 
complementary neuroimaging modalities, simultaneous EEG-
fMRI can be helpful. In this paper, we proposed a framework 
for classifying the brain activity patterns with simultaneous 
EEG-fMRI.  We have acquired five human participants’ data 
with simultaneous EEG-fMRI by showing different object 
categories. Further, combined analysis of EEG and fMRI data 
was carried out. Extracted information through combine 
analysis is passed to support vector machine (SVM) classifier 
for classification purpose. We have achieved better 
classification accuracy using simultaneous EEG-fMRI i.e., 
81.8% as compared to fMRI data standalone. This shows that 
multimodal neuroimaging can improve the classification 
accuracy of brain activity patterns as compared to individual 
modalities reported in literature.  

I. INTRODUCTION 

Human brain has complex dynamics and it produces brain 
activity patterns carrying encoded information. Non-invasive 
measurement of human brain activity can give suitable 
extent of information to decode the different mental states. 
Brain activity analysis can able to tell us about what a person 
is seeing, perceiving or remembering. Brain reading or mind 
reading is today hot topic of research and debate [1]. Human 
visual imagery defined as seeing with mind’s eye. When 
person is creating a visual image of orange, the required 
information to construct an orange is available mentally as 
the person in actual perceiving it [2]. The main question 
arises that could it be possible to decode human vision or 
visual system and how the information is encoded and 
decoded.   Haxbey and colleagues [3] had used functional 
magnetic resonance imaging (fMRI) to measure the different 
patterns of blood oxygen level dependent (BOLD) activity 
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occurring inside human brain in response to different objects 
in the ventral temporal cortex. Their result showed that  if 
brain activity patterns were compared,  high level object 
areas can able to predict what the participants were seeing 
i.e., the pictures of houses, faces, chairs, cats, bottles  shoes 
etc.  For each stimulus category, a distinct pattern was 
achieved. However,  results showed for faces and object 
categories,  ventral temporal cortex were widely distributed 
and also overlapping  [3].  Cox & Savoy [4] used more 
advance algorithm for pattern classification to improve the 
prediction and classification results. In their study, 
multivariate statistical pattern recognition method was used 
to classify the fMRI based brain activity patterns evoked by 
the visual stimuli of various object categories. Results shown 
higher classification accuracy as compared to the traditional 
univariate analysis of fMRI data [4]. The similarity 
relationship between object responses is different in early 
visual area and high level object visual area. The activity 
patterns for both are quite different and were reported in 
literature [5]. In contrast to fMRI studies, EEG based 
approaches to classify/decode object categories and 
cognitive states were also done.  Rousselet and colleagues 
[6] studied single trial EEG dynamics  provoked by showing 
stimuli of noise textures, faces and houses. The response to 
each category is different in amplitude of EEG signals 
between the frequency range of 5-15 Hz. Stronger response 
to faces was observed as compared to textures and houses. In 
recent study, Sarabi and colleagues [1] decoded the basic 
object categories using task oriented EEG signals and 
employing wavelet transform with support vector machines. 
The classification/decoding capability of the EEG based 
study were not so much promising as compared to fMRI. 
However, fMRI cannot also give 100% accuracy. There is 
need to combine complementary nature of these two 
neuroimaging modalities together to achieve higher 
spatiotemporal resolution of human brain for better 
classification purpose. 
 Multimodal neuroimaging methods can be useful for better 
understanding of the brain dynamics. In the last decade, 
there has been growing interest to find the relationship 
between the electrophysiological and hemodynamics 
measurements of the brain activity i.e., EEG and BOLD 
fMRI.  EEG signals recorded at scalp have high temporal 
resolution and poor spatial resolution due to limited number 
of electrodes.  On the other hand, fMRI has very high spatial 
resolution and low temporal resolution. The complementary 
nature of EEG and fMRI can be combined to get high 
temporal and spatial resolution at the same time [7, 8]. 
However, simultaneous EEG-fMRI brings many technical 
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challenges in terms of data acquisition and data analysis 
point of view [8, 9] .  In this paper, we have proposed 
simultaneous EEG-fMRI approach to classify the object 
categories specific brain activity. This is the main novelty of 
our research work. We have acquired simultaneous EEG-
fMRI data on human participants with 128 channel MR 
compatible EEG equipment and 3 Tesla Philips MRI 
scanners.  We presented different object categories to the 
participants. Simultaneous EEG-fMRI able to capture the 
correlations between BOLD signal and EEG modulations 
which identified the task or object categories specific brain 
activities in terms of well localized activated volumes. 
Results have shown better classification accuracy with 
combine analysis of EEG and fMRI data as compared to 
fMRI data standalone.  By enhancing the data analysis 
methods for combine EEG and fMRI data, the accuracy can 
further be improved. This can help researchers to understand 
the neural patterns of brain in a better way.  Section II 
explains the data acquisition and experimental paradigms 
used for acquiring data. In section III, we described the 
complete methodology for simultaneous EEG-fMRI. Section 
IV shows the results acquired and section V ends with 
conclusion. 

II. DATA ACQUISITION 

A. Subjects 
Data were collected from five healthy right handed 
participants (University graduate students with normal 
vision or corrected to normal vision, mean age 25.5). All 
subjects have not any history of neurological or psychiatric 
disorders. Each participant signed consent form for their 
participation in this study. Also the study has been approved 
by human ethics committee of Universiti Sains Malaysia, 
Kota bharu, Malaysia. 

B. Experimental Paradigm 
Experimental design for simultaneous EEG-fMRI is 
complex in nature. The main important concern is the 
efficiency of post experiment statistical analysis which relies 
on the experimental paradigm. Hence, it is mandatory to 
consider all the parameters before designing any 
experimental paradigm.   

                        ……………………………… 

 
Figure 1.  Experimental paradigm for Object categories 

In our case, object categories were shown to participants. 
Each category picture (visual stimulus) is displayed for 2 

seconds, after that there was inter stimulus interval (ISI) for 
4 seconds and after that again different picture of same 
category has been  shown to the participants and  object 
categories were shown in random fashion.  Figure 1 shows 
the experimental paradigm for object categories. 

C. Simultaneous EEG-fMRI data acquisition 
Many technical challenges are involved to combine the EEG 
and fMRI neuroimaging modalities together. To develop 
simultaneous EEG-fMRI setup, the first thing required is to 
have MR compatible EEG equipment. Normal EEG 
equipment cannot be used inside the MRI scanner as due to 
the higher magnetic fields i.e., 3 Tesla or 7 Tesla. Figure 2 
shows our developed data acquisition setup and data 
recording. 

 
Figure 2.   Data acquisition inside MRI scanner 

D. EEG Data Acquisition 
EEG data has been acquired with 128 Channels MR 
compatible EEG equipment (EGI Systems, USA). The 
sampling rate is to be set 250 Hz which covers all desired 
frequency bands required for EEG data. 

E. fMRI Data Acquisition.  
fMRI images were acquired with 3T Philips MR scanner. 
Gradient Echo Planner Imaging (EPI) was used on 3 Tesla 
Philips MRI scanner as pulse sequence with 2 second long 
repetition time (TR) and 35 milliseconds as echo time (TE). 
The matrix size of 64x64 was selected. The slice thickness 
was 3 mm with no slice gap. Whole brain anatomical scans 
were also acquired using T1-weighted sequence. The visual 
stimulus is shown through projector and participant was able 
to see it through reflecting mirror placed on his/her head. 

III. METHOD 

Simultaneous EEG-fMRI data analysis is challenging to get 
brain activity patterns for classification purpose. It first 
involves the EEG and fMRI data processing to remove any 
kind of artifacts and ambiguities.  After cleaning the data, 
the combine analysis method will be applied. 

A. EEG and fMRI Data preprocessing  
EEG data acquired inside MRI scanner is highly 
contaminated with artifacts.   Gradient artifacts (GA) due to 
magnetic fields present in the EEG data and these have large 
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repetitive magnitudes.  GA artifacts can be removed with 
template based method by subtracting the mean artifact from 
all the EEG data. Ballistocardiogram (BCG) artifacts 
induced in EEG data due to cardiac related activities and 
pulsatile blood flow. BCG artifacts are difficult to remove as 
compared to GA artifacts. Optimal basis set (OBS) is the 
commonly used method to remove these artifacts [10]. The 
first step for analyzing fMRI data is to preprocess it which 
includes slice time correction, re-alignment, co registration, 
normalization and spatial smoothing. The quality of the final 
results depends upon the preprocessing block. To get the 
better results, preprocessing should be done carefully [11]. 

B. Joint EEG-fMRI Analysis 
Different approaches are reported in literature for joint 
analysis of EEG-fMRI data. We have selected EEG 
informed fMRI analysis as asymmetric approach for 
combined analysis of simultaneous EEG-fMRI data. 
  

1) EEG informed fMRI Analysis 
In the EEG informed fMRI analysis approach, the main goal 
is to extract the EEG signal information along the 
experiment time course. The underlying neural activity 
recorded with EEG is directly related with the fMRI signals 
with respect to the external stimuli or events. Therefore, the 
EEG signal is convolved with the hemodynamic response 
function (HRF) and the result from this convolution is used 
as regressors in the fMRI analysis which uses a general 
linear model (GLM) [11].  The proposed methodology is 
shown in Figure 3. 
 

 
Figure 3.  Proposed methodology for brain activity patterns classification 

2) Classification: Support Vector Machines (SVM).  
Different machine learning techniques were employed to 
classify brain signals and reported in literature [12, 13]. 
However, one of the most used machine learning methods 
for classification of fMRI data is Support Vector Machines 
(SVM). SVM classifier is kernel-based approach to find 
functions of the input data that enable both classification and 
regression [14]. SVMs are considered the best state of the art 
classifiers having lower complexity as compared to other 
classifiers like neural networks, naïve Bayes and Fuzzy 
classifiers. SVM based upon a concept to find the hyper 

plane which can able to classify the data to the separate 
classes with possibility of maximum margin. For classifying 
different brain activity patterns, we selected the SVM 
classifier for classification purposes.   

IV. RESULTS 

First EEG data has been passed from 0.3 Hz high pass filter 
and 50 Hz notch filter to remove DC component and power 
line noise respectively. Then EEG signal is band limited to 
40 Hz with low pass filter because above this frequency MR 
related artifacts becomes more difficult to remove. EEG data 
was cleaned from GA and BCG artifacts with methods 
described in section 3.1.  Also eye blinking and movement 
artifacts have been removed. Figure 4 shows the EEG data 
with gradient and BCG artifacts. Figure 5 shows clean EEG 
data in comparison to contaminated data for single channel. 
 

 
 

Figure 4. EEG data with gradient and BCG artifacts 

 

Figure 5.  Clean EEG and EEG with artifacts-Single channel 

For EEG-fMRI combine analysis, first clean EEG data were 
decomposed into time-frequency domain and we selected 
only occipital region electrodes as it is involved in visual 
related activity. Regressors were estimated using wavelet 
decomposition and these regressors were convolved with 
hemodynamics response functions (HRF) and fed into 
general linear model (GLM) using SPM8 for further fMRI 
analysis.  

TABLE I. CLASSIFICATION ACCURACY RESULTS 

Participant  No.  fMRI Simultaneous EEG-fMRI 
 

Participant 1 72% 79% 
Participant 2 78% 81% 
Participant 3 75% 80% 
Participant 4 79% 83% 
Participant 5 80% 86% 
Mean Accuracy 76.8% 81.8% 
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Thus, Brain activation maps for each participant were 
generated. Figure 3 also shows the brain activated regions in 
3D brain. The voxels for region of interests (ROIs) were 
extracted from a sphere of radius 3 mm having centered on 
specific peak activity of the relevant contrasts.  For each 
ROI, the subject specific peak was marked by visual 
inspection. After extracting the ROIs, they are passed into 
SVM classifier for classification purposes for each 
participant. Linear SVM kernel has been used. We have 
achieved 81.8 % classification accuracy between two object 
categories shown to the participants i.e., animals and human 
made objects like chairs.  Also classification results were 
obtained using single neuroimaging modality i.e., fMRI and 
fMRI analysis was done with SPM8 [15] software and same 
classification process has been repeated as done for EEG-
fMRI data. Classification accuracy results based on fMRI 
data were compared with simultaneous EEG-fMRI data 
results and are depicted in table I. Mean classification 
accuracy of 81.8 % has been achieved with simultaneous 
EEG-fMRI approach as compared to 76.8 % classification 
accuracy with fMRI data only. It shows that higher 
classification accuracy can be achieved with multimodal 
neuroimaging techniques i.e., simultaneous EEG-fMRI. 

V. DISCUSSION 
Object classification through brain activity patterns acquired 
with different neuroimaging modalities is an interesting 
topic of research in neuroscience community [1]. Many 
studies were conducted by researchers to classify the brain 
activity patterns using EEG, PET and fMRI etc.  Each 
neuroimaging modality has some limitation in term of 
temporal and spatial resolution to capture enriched encoded 
information from the human brain. Simultaneous EEG-fMRI 
has proven a useful method to capture brain encoded 
information with higher spatiotemporal resolution. In this 
paper, we have proposed simultaneous EEG-fMRI method 
which can classify the brain activity patterns with better 
classification accuracy as compared to the individual 
modality standalone. We have acquired simultaneous EEG-
fMRI data by showing object categories to the participants.  
EEG informed fMRI method for joint analysis was used to 
get the brain activity patterns with higher spatiotemporal 
resolution. These brain activity patterns associated to the 
object categories were extracted and then passed to SVM 
classifier for classification purposes to classify between the 
two object categories.  Results have shown that 81.8% 
classification accuracy with SVM classifier has been 
achieved using simultaneous EEG-fMRI data as compared to 
76.6% classification accuracy with fMRI data only.  In 
addition, EEG based classification results are poor as 
compared to fMRI data. In future, others methods for 
simultaneous EEG-fMRI joint analysis can be applied and it 
can further improve the classification results. 
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