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Abstract— Electroencephalography (EEG) has been widely 

adopted for investigating brain behavior in different cognitive 

tasks e.g. learning and memory. In this paper, we propose a 

pattern recognition system for discriminating the true and false 

memories in case of short-term memory (STM) for 3D and 2D 

educational contents by analyzing EEG signals. The EEG 

signals are converted to scalp-maps (topomaps) and city-block 

distance is applied to reduce the redundancy and select the most 

discriminative topomaps. Finally, statistical features are 

extracted from selected topomaps and passed to Support Vector 

Machine (SVM) to predict brain states corresponding to true 

and false memories. A sample of thirty four healthy subjects 

participated in the experiments, which consist of two tasks: 

learning and memory recall. In the learning task, half of the 

participants watched 2D educational contents and half of them 

watched the same contents in 3D mode. After 30 minutes of 

retention, they were asked to perform memory recall task, in 

which EEG signals were recorded. The classification accuracy 

of 97.5% was achieved for 3D as compared to 96.5% for 2D. 

The statistical analysis of the results suggest that there is no 

significant difference between 2D and 3D educational contents 

on STM in terms of true and false memory assessment. 

I. INTRODUCTION 

Learning and Memory are two related mental processes; 
they are both intensively studied subjects in neurosciences 
[1]. Learning is the change in behavior because of an 
experience; while memory is the ability to store and recall 
learned experience [4]. Revealing the learning and memory 
mechanism of human brain is the core objective of the 
intelligent science [3]. In cognitive psychology, human 
memory processes are functionally divided into three 
categories namely encoding, retention, and recalling [8]. 
Many models classified the memory into three types, 
sensory, short-term and long-term memory [3].  

The advent of 3D technology and devices has opened the 
question whether 3D educational contents are more effective 
than 2D contents for learning and memory recall. In this 
context, another question is whether we can distinguish true 
memory from false memory. Addressing this issue, we 
propose a pattern recognition system that uses EEG brain 
signals [2] to distinguish true memory from false memory in 
case of STM for 2D and 3D educational contents.  

For assessing true memory and false memory, multiple 
choice questions (MCQs) can be asked from a subject, but 
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only the answers of MCQs might not give true insight into 
true and false memories because the answers of some MCQs 
might be based on mere guess. It is intuitive that the brain 
states while answering based on guess and learned 
information will not be same. As such, we use EEG signals, 
which directly measure the brain states, for the prediction of 
true and false memories. 

The proposed system is a pattern recognition system, 
which involves feature extraction and classification stages. 
We learn the system using features extracted from the EEG 
signals corresponding to correct and incorrect answers and 
then predict the answers of MCQs to assess true and false 
memories. If the predicted answer is correct, then it means 
true memory, otherwise it is false memory. To extract 
features, EEG signals are converted into topomaps, and 
redundant topomaps are removed using city-block distance. 
A novel approach has been proposed for feature extraction 
from topomaps and Support vector machines (SVM) is used 
for classification. The mean prediction accuracy of the 
system is 96.5% in case of 2D and 97.5% in case of 3D. 
Statistical analysis of the results indicates that there is no 
significant difference between 2D and 3D educational 
content on STM in terms of true and false memory. 

The rest of the paper is organized as follows: The 
proposed methodology is discussed in detail in Section II. 
Section III presents the results and discusses them. Section 
IV concludes the paper. 

II. METHODOLOGY 

First we present the detail of the data collection 
procedure and then discuss different components of the 
proposed system for predicting true and false memories. The 
schematic diagram of the system is shown in Figure 1. 

A. Data Collection 

The steps performed to collect EEG data are given in 

detail in this section. 

Participants & Ethics Approval: Thirty-four healthy 

volunteers (age range 18-30 years) participated in the 

experiments. They had normal or corrected to normal vision 

and were free from any neurological disorders that may 

affect the experimental results. All the participants signed 

informed consent document prior to start the experiment. 

The participants were fairly divided into two groups (2D and 

3D) based on age and background knowledge. This research 

work was approved by Ethics Coordination Committee of 

Universiti Teknologi PETRONAS, Malaysia.  
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Figure 1.   Diagram of the System 

 Learning Materials & Experimental Tasks: The 2D and 

3D educational learning material used in this study was taken 

from Eureka 3D system (www.designmate.com). The 

contents were related to Biology course of level K-12 and 

none of the participant had background in this area. 
The experiments consisted of two tasks: learning and 

memory recall. In learning task, each participant watched 2D 
or 3D learning material for 8~10 minutes depending on 
his/her group. Memory recall task was performed after thirty 
minutes of retention; in this task, twenty multiple choice 
questions (MCQs) about the learning materials were asked 
from each participant. Each MCQ had a question statement 
with four options for the answer. Participants were instructed 
to respond the answer by pressing a button from 1-to-4 
depending on the choice which they think correct. The 
MCQs were same for both 3D and 2D groups. During the 
recall task, EEG cap was set and signals were recorded.             

Both learning animations and MCQs of the recall task 
were presented on 41-inch TV screen, which was kept at a 
distance of 1.5 meter away from subject’s eyes. The 
maximum time to answer one question was 30 seconds. If a 
question is responded correctly, it was assigned the label of 
‘1’ otherwise ‘0’. These correct and incorrect responses of 
each participant were used to separate correct (true memory) 
and incorrect (false memory) answers data. 

EEG Recording: EEG recording corresponding to one 

question started when question appeared on the screen until 

the subject gave response to the question by selecting one of 

the four options for the answer; the maximum duration was 

30 seconds. The start time at which question appeared on 

screen and the end time when the subject pressed answer 

button (response) were saved in an event file that was used to 

extract the part of EEG signal corresponding to the question. 

EEG data were recorded with a sampling rate of 250 samples 

per seconds using 128 channels Hydro Cel EGI Inc., USA. 

Some electrodes were noisy because of their locations on the 

scalp, so we selected 93 out of 128 channels by omitting the 

outmost electrodes. 
Each recorded EEG signal is characterized by temporal 

and spatial distributions, and is represented by the spatio-
temporal data matrix X∈ ℝC×T, where C is the number of 
channels and T is the number of sampled time points. We 
denote the scalp potential at channel c and time point t by 
xc(t), then EEG signal at time point t is represented by X(t) = 
[xc1(t),…, xcC(t)]T.  

 

B. Preprocessing 

A band-pass filter (1-48Hz) was applied on raw EEG 
data. Ocular artifacts were removed by using Gratton & 
Coles method [9] and all the EEG data were visually 
inspected.  

C. Creation of Topomaps 

The EEG signal X(t) at time point t represents the 
voltages of the channels at the selected scalp locations, and it 
can be represented as a scalp map (topomap), which is an 
image.  Therefore, we can use image processing and analysis 
techniques to extract features from topomaps. Using the 
recorded EEG signal and event information corresponding to 
each question, topomaps are created using EEGLAB toolbox 
[5]. Three sample topomaps are shown in Figure 2. 

D. Selection of Topomaps 

We noticed that many consecutive topomaps are similar 
and they do not contain any discriminative information. To 
get rid of this redundancy, we compare consecutive 
topomaps pairwise using some distance measure and select 
the most discriminative topomaps. Different distance 
measures are possible; for the sake of simplicity, we used 
cityblock distance. Pairwise distances of topomaps are 
calculated and the topomaps are ordered in descending order 
and M (= 20, 30, 50,100,120, and 150) topomaps with the 
highest dissimilarity selected, as shown in Figure 3. 

 

Figure 2. Three sample topomaps 

 

Figure 3. Selection of Topomaps 
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E. Feature Extraction 

After selecting the most discriminative topomaps for each 
question, the next step is feature extraction. We extract 
texture information from each topomap using localized first 
order statistical features: mean (m), standard deviation (std), 
kurtosis (kurt), skewness (sk) and entropy (ent). We selected 
the statistical features which are commonly used to represent 
texture in various applications. We examined different 
combinations of the statistical features to find the most 
discriminative features for the problem under discussion. In 
our approach, for localized features, first we divide each 

topomap into nn blocks; in our experiments, we tested two 

different numbers of blocks i.e. 1616 and 88 blocks.  Then 
we extract statistical features from each block and 
concatenate them into a vector. Figure 4 shows ith topomap 
and the corresponding feature vector Vi .  

After extracting the feature vectors V1, V2, …, VM from all 
the M topomaps selected for each question, we compute the 
vector V = [v1, v2, …, vs]T, where vi = mean (vi1, vi2, …, viM), 
vij being the ith component of Vj, j = 1, 2, …, M.  The vector 
V represents the brain state corresponding to one question 
(sample). There are two reasons for computing V; first, if we 
concatenate V1, V2, …, VM,  the dimension of the feature 
space becomes excessively large, and second, it captures the 
local discriminative information about brain states in a 
compact way. In case of concatenation, the dimension of the 

feature space is [#blocks  #features from each block  # 
topomaps] but in case of the proposed method, this 

dimension is [#blocks  # features from each block]), which 
is reduced by the order of the number of topomaps. For 
example, if 5 features are extracted from each block, and the 

number of blocks is nn, the dimension is reduced from 
5n2M to 5n2, where M is the number of topomaps. 

F. Feature Selection 

Since not all features are discriminative and also the high 
dimensionality of features causes computational problems 
and decline the prediction accuracy, so we need feature 
selection method to select the most discriminative features 
and discard the redundant ones. We used an efficient feature 
selection method that uses area under ROC curve to measure 
the importance of features and select the discriminative ones. 

 

Figure 4. Feature extraction from one topomap, which is divided into 4x4 

blocks. 

G. Classification 

True and false memory prediction problem involves two 
classes: correct and incorrect answers. For a two class 
problem, we can use any of the well-known classification 

techniques such as Neural Network, Support Vector 
Machines (SVM), Random Forests etc. As, in most of the 
applications, SVM gives excellent performance for two class 
problems because of better generalization ability, so we 
employed SVM. SVM is basically a linear classifier and 
kernel trick is used to handle the problems where data is not 
linearly separable. As Radial Basis Function (RBF) gives 
good performance in most of the cases, we employed SVM 
with RBF kernel; this involves two parameters. To find the 
best parameter values we used a grid-search method [6].  We 
implemented SVM using libsvm [7] library. 

III. RESULTS AND DISCUSSION 

In this section, we present the results of the proposed 
system and discuss them. First, we describe the experimental 
setup that was used to perform the experiments. We selected 
a subset of the data to make sure that the samples used in 
modeling and testing the classifiers are true representatives 
of the two classes. The selected data was consisted of 200 
questions: 100 with correct answers and 100 with incorrect 
ones. For the reason stated above, selection of the questions 
was not random, instead the correct questions were selected 
from the subjects who gave more correct answers and the 
incorrect questions were selected from the subjects who gave 
more incorrect answers. For performance evaluation of the 
system, 10 fold cross validation was used and the prediction 
rate was measured using the accuracy (the percentage of 
correctly classified correct and incorrect answers) and the 
area under ROC curve (AUC), which are two commonly 
used measures for evaluating a classification system. The 
accuracy and AUC were calculated as the mean accuracy and 
AUC for 10-folds. 

A. Results 

We modeled two classification systems, one for 2D 
educational contents and the other for 3D cases. We trained 
and tested each system using the data selected in the same 
way. Each system involves three parameters: number of 
selected topomaps, number of blocks and the number of 
statistical features computed from each block. 

First, we selected 20 topomaps and divided each 

topomap into 88 blocks and extracted features with 
different combinations of first order statistics (1, 2, 3, 4 and 
5) from each block, where 1 stands for mean only, 2 for 
mean and standard deviation, 3 for mean, standard deviation 
and kurtosis, 4 for mean, standard deviation, kurtosis and 
skewness, and 5 for all statistics. Other possible 
combinations can also be examined for better prediction 
accuracy. The best accuracy obtained by this method was 
77.5% for 2D and 86.5% for 3D. 

Keeping all other parameters fixed, we increased the 
number of blocks into 16x16. In this case, the accuracy 
increased and the best accuracy obtained was 82% for 2D 
and 89.5% for 3D. 

Then we increased the number of selected topomaps per 
question to 30 topomaps and extracted features from 8x8 
blocks. There was no significant improvement in accuracy 
for 2D, it reached 78% only whereas for 3D case, the 
improvement was significant and reached 92%, which is 
better than 86.5% obtained with 20 topomaps. 
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Also, we tried 16x16 blocks with 30 topomaps, and 
found that the accuracy was 81% for 2D, and 91.5% for 3D. 

We increased the number of topomaps to 50 and tried 
8x8 and 16x16 blocks. The accuracy for 3D did not exceed 
92% that we got before, but it was increased and reached 
88.5% for 2D case. 

The results presented above indicate that the division of 
each topomap into 16x16 blocks gives better accuracy than 
8x8 blocks. This is due to the reason that in the former case, 
the block size is smaller and local information is captured in 
a better way, which results in better discrimination.  

To see further the impact of the number of selected 
topomaps, we selected 100 topomaps and repeated the same 
scenario to see the accuracy. This case gave us the best 
accuracy for both 2D and 3D, for 2D it was 96% and 96.5% 
for 3D. Using 120 topomaps, 2D reached 96% and 3D 
accuracy was improved and reached 97.5%. 

Because we still got improved accuracy, we continued 
increasing the number of topomaps and selected 150 
topomaps. In this case we got 96.5% accuracy for 2D and 
97.5% for 3D using 16x16 blocks  as shown in Table I 
(mean±std). Also, see the results for 8x8 blocks in Table 2. 

 
TABLE 1. RESULTS WITH 1616 BLOCKS AND 150TOPOMAPS. 

#Features Accuracy AUC 

2D 3D 2D 3D 

1 95.5 ± 4.4 96 ± 3.9 0.97 ± 0.05 0.97 ± 0.04 

2 96.5 ± 3.4 97.5 ± 3.5 0.95 ± 0.06 0.98 ± 0.03 

3 86 ± 7.4 92.5 ± 5.9 0.87 ± 0.09 0.93 ± 0.08 

4 85.5 ± 6.4 92.5 ± 7.6 0.86 ± 0.06 0.93 ± 0.08 

5 86.5 ± 6.7 92 ± 6.3 0.88 ± 0.07 0.93 ± 0.07 

 
TABLE 2. RESULTS WITH 88 BLOCKS AND 150TOPOMAPS. 

#Features Accuracy AUC 

2D 3D 2D 3D 

1 91 ± 7 87.5 ± 6.8 0.93 ± 0.06 0.87 ± 0.10 

2 95.5 ± 2.8 96.5 ± 3.4 0.95 ± 0.05 0.96 ± 0.07 

3 93 ± 5.4 97.5 ± 3.6 0.92 ± 0.07 0.99 ± 0.01 

4 93.5 ± 5.8 96.5 ± 4.7 0.92 ± 0.08 0.98 ± 0.04 

5 93.5 ± 3.4 97 ± 2.6 0.94 ± 0.07 0.97 ± 0.04 

 
By increasing the number of selected topomaps, the 

accuracy increased and reached the maximum accuracy using 
150 topomaps. It is due to the reason that the more the 
number of topomaps, the more discriminative information is 
captured. Increasing the number more than 150 topomaps 
did not increase accuracy but the computational cost 
increased because it involved redundancy. 

To know whether there is significance difference between 
2D and 3D, we run each system 5 times by randomizing the 
datasets and 50 10-fold cross validation accuracies were 
obtained for each system using the system configuration 
which gave the best results. Using SPSS software, an 
independent t-test was applied depending on the assumption 
that normality is acceptable. There was no significant 
difference in the values for 2D (M=96.6, SD=3.7) and 3D 
(M=97.2, SD=3.3) groups; t(98) = -0.847, p = 0.399. These 
results suggest that there is no statistically significant 
difference between 2D and 3D in term of false and true 
memory discrimination in STM.  

IV. CONCLUSION 

We proposed a system for assessing true and false 
memories in case of STM by studying the effects of 2D and 
3D educational contents and using EEG signals, which 
reflect the direct brain states. We associated true and false 
memories with correct and incorrect answers, instead of 
using only the subjective responses of participants (answers 
of the questions). This approach is more effective because it 
disregards the correct answer by mere guess and involves the 
actual brain states developed while giving correct or 
incorrect answers. Our analysis to the results showed that 
there is no significant difference between 2D and 3D 
educational contents in terms of true and false memory 
prediction in case of STM recall. The modeled classification 
systems can be employed to predict whether the answers of a 
subject are based on mere guess or learned information and it 
can be availed in truly assessing the memory recall ability of 
an individual participant, which can be helpful in selecting 
the right educational material and providing him/her 
guidance for his/her future carrier. The average accuracies of 
the systems are 97.5% in case of 3D and 96.5% in case of 
2D, which indicate that there is still room for improvement. 
More discriminative features can further enhance the 
accuracy. Also, different classifiers can be tested to know 
which classifier can give the best result for this problem.  
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