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Abstract The dangerous, overgrown vegetation/trees

under high voltage transmission lines right-of-ways

(ROWs) have caused severe blackouts/flashovers due to

interference with power lines which leads to short circuit-

ing among the conductors. Therefore, these dangerous

encroachments are monitored periodically along the elec-

trical distribution networks ROWs through visual inspec-

tion, or by airborne system. Each of these methods has its

own attributes and limitations and have proved to be costly,

time consuming and not much accurate. In these circum-

stances, it is necessary for the electrical utilities to review

their vegetation management practices so as to avoid

incidents of unintended encroachments. In tropical coun-

tries, overgrown vegetation is a common cause for power

line failure. This paper proposes an innovative concept of

utilizing a single camera for monitoring dangerous vege-

tation (trees, shrubs and plants, etc.) under transmission

lines ROWs. The main focus is on using an imaging device

(camera) integrated on each transmission pole to automate

inspection for the vegetation encroachments endangering

the transmission lines. These cameras are envisioned to be

connected wirelessly to each other, forming a series of

wireless camera networks that can be monitored remotely.

A single camera mounted on power poles acquires images

and sends them wirelessly to the base station. At base

station, algorithm (software) trained by image processing

and pattern recognition techniques is used to identify

(height, depth, and width of encroached vegetation, etc.)

excess vegetation encroachments within and outside

ROWs. The performance evaluation of a real time devel-

oped test-bed scenario proves the feasibilities of integrating

the method for transmission line maintenance.

Keywords Transmission lines � Blackouts/flashovers �
Right-of-ways � Encroachments � Image processing �
Pattern recognition � Single camera

1 Background

The overgrown vegetation under high voltage (HV) over-

head lines right-of-ways (ROWs) has caused severe

blackouts/flashovers due to interference with operation

circuits which leads to short circuiting among the con-

ductors. As an example, the 2003 US–Canadian blackout

occurred due to inadequate tree trimming which resulted in

three 345 kV lines and one 138 kV line outages, causing

huge financial losses for electric utility companies operat-

ing in North America, and damages to consumers [1]. In

the same year, a very immense power outage occurred in

Italy when tripping of a major HV line between Italy and

Switzerland was caused by a tree flashover. In Malaysia

nearly about 66 % of country area is covered with forests,

and numerous blackouts had been recorded due to
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vegetation intrusions. Between years 2005 and 2008, the

power line blasts occurred because of interaction of over-

head lines with excess vegetation (trees) in Sarawak in East

Malaysia [2]. Outages occur when trees and HV lines come

closer to one another passing the minimum allowed dis-

tance. Due to bad weather conditions including rain, wind

and storm, etc., these vegetations can also strike the power

line sag, or sometimes hot weather can result in sagging of

HV transmission lines into tree branches causing line

outages. Hence, it is necessary and crucial for electric

utilities to ensure reliability and safety of overhead lines

against endangering encroachments.

The traditional method for inspecting HV lines is visual

field survey, whereby a team is deployed to inspect the

power lines either by pole climbing or using vehicles. For

pole-climbing, linesmen climb up a pole with computer

having information regarding the components at that pole.

This method is less accurate due to judgmental errors by

humans for vegetation that appears to be in safe clearances

but could be dangerous during bad weather conditions, e.g.,

heavy rain, wind and storm, etc. Other methods of moni-

toring are based on aerial inspection which includes: heli-

copter surveillance, videography by means of stereoscopy

imaging and airborne LiDAR scanners have been

explained thoroughly in terms of scientific contents about

the particular problems and technical difficulties, both from

data collection (i.e. sensor evaluation) and data analysis in

[3]. Helicopters mounted with surveillance cameras are

used to inspect the region with transmission line network

[4]. This method is ambiguous for a non-uniform terrain

due to changing perspective of target via random motion of

camera in vertical direction as in [5]. However, the air-

borne LiDAR scanning is an optical remote-sensing tech-

nique that uses the scattering of light to find the range and

other information of the distant object. After taking the

data from LiDAR, it is mapped on the geographical

information system (GIS) integrated with computer to

recover the original coordinates and 3D view of the sce-

nario [6]. By using LiDAR, an average of about 100 km of

data is collected per day and no permission from the land

owners is needed. In general, the data are processed in

AutoCAD or other software packages like PLS-CADD,

ESRI and Small World, etc. Uneven hovering of airborne

vehicle causes ambiguities in the data recorded by LiDAR

and consequently the software used for 3D tracking of

transmission line can produce ambiguous model of the

scene. Aerial stereoscopy technology captures images of

ground from an elevated position by means of stereovision

[7, 8]. Depending on the altitude, it allows to capture the

images with appropriate resolution. However, low flight

altitude (\500 m), difficulty in obtaining flight permission,

high cost and low accuracy are the main disadvantages of

stereo videography.

Each of these methods has specific attributes. But none

of these methods provide a satisfactory way for efficient

monitoring (with respect to accuracy, time and cost) as

tabled in [3]. LiDAR technique may provide accurate

results (about 70 %) but still it is very expensive to use.

Presently, US is spending about $2 billion per annum on

using LiDAR and mapping surveys of HV lines for vege-

tation management in North America. Currently, the utility

companies all over the world inspect their power distri-

bution networks on regular intervals using visual field

survey or airborne technologies (e.g., LiDAR). In this

paper, we have proposed a single camera-based automated,

non-airborne method that uses an image-processing plat-

form to monitor the vegetation encroachments ROWs.

2 Integration of single camera on each transmission

pole ROWs

To automate the inspection of overhead HV lines, a single

camera is deployed to examine transmission lines for

vegetation encroachments. Those single cameras are

installed along the transmission poles ROWs that can be

interlinked wirelessly to one another forming a monitoring

network. The images captured by those cameras are

transmitted to base station wirelessly where they are pro-

cessed to identify whether the vegetation are in danger

zone or not. In the proposed method, a single scene image

is captured with appropriate resolution to:

A. Detect the encroached vegetation within and outside

ROWs boundary carrying the transmission lines.

B. Estimate the 3D localization of the encroached trees in

real world coordinates.

C. Calculate the absolute height of trees, distance between

the encroached vegetation and transmission poles and

distance between transmission lines and excess vege-

tation outside ROWs.

To simulate the scenario, an experimental prototype

containing a single camera (a wireless camera kit from

Intel Crossbow that contains an IMB400 camera board

which incorporates an OV7670 imaging sensor that is

capable of acquiring RGB color images having resolution

640 9 480 pixels is used to capture the data (images) and

sends them wirelessly to gateway PC http://www.memsic.

com) and a set of modeled transmission lines is used. The

wireless protocols and various communication topologies

that can be utilized by those wireless cameras (integrated

on HV poles) to communicate with one another over a long

distance (since the distance between HV poles is normally

maximum up to 400 m) to transmit data to base station are

explained in [9–12] and thus need not to be discussed much

in detail as those authors have contributed much on
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multimedia communications. The band for communication

among those cameras that can be used is 2.4 GHz as it is

un-registered globally. The power issues for the cameras

can be met by using solar battery, as it provides a longer

life time due to its continuous charging, and it is a cost-

effective solution for devices, sensors and cameras used

outdoors [13]. Those cameras are firmly sealed in a plastic-

type coating and are covered with a windshield to avoid

any problem from electromagnetic (EM) radiations of HV

lines and bad weather (including wind, storm and heavy

rain, etc.). Whereas, the main task is to develop an algo-

rithm using image processing and pattern recognition

techniques to monitor the dangerous vegetation in data

(image frames) received at the base station. After that,

operators at base station will order the trimmers to cut-off

the vegetation wherever it is required.

3 Methodology to detect encroached vegetation ROWs

Some images showing vegetation surrounding overhead

lines captured from various locations in Ipoh (Malaysia)

are shown in Fig. 1. Figure 2 shows various images of a

model for miniature overhead transmission line with the

lens of the camera located at three fourth of height of the

pole. The modeled overhead lines are built with spans of

0.5 and 1.0 m. A model of encroaching vegetation is

positioned at front and back of the pole and left/right side

Fig. 1 a 22 kV overhead power lines along Lumut–Ipoh highway. b Overhead lines passing through fields in Ipoh. c The encroachments due to

uneven dispersion of power lines. d Overhead lines in dense residential area

Fig. 2 a Overhead line clearance from encroachment. b Potential

encroachment from beneath the overhead lines. c Leafy-type vege-

tation encroachment from the side. d Leafy-type vegetation

encroachment from underneath the line. e Potential, bushy-type

vegetation encroachment from side. f Bushy-type vegetation

encroachment from underneath
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of the camera’s range of view, with varying distances to the

pole and overhead lines. A picture of overhead lines clear

of vegetation encroachment is shown in Fig. 2a, while

Fig. 2b shows a potential encroachment from beneath the

lines which consists of bushy vegetation. Although not

fully an encroachment to the line, it has potential to grow

and disrupt the line. Figure 2c shows encroachment of

leafy vegetation, with the leafy vegetation positioned

slightly to left side of the pole in view. Whereas Fig. 2d

demonstrates encroachment of leafy-type vegetation from

the front of the pole in view, Fig. 2e shows potential

bushy-type vegetation encroachment from the sides. A full

encroachment of bushy-type vegetation, located at the front

of the pole in view is shown in Fig. 2f.

The objective of this research is to develop an imaging

algorithm that can easily identify vegetation that can harm

HV lines ROWs. The overall procedure is divided into four

stages. The first stage includes the acquisition of initial

reference and scene image frames. The second step is the

filtering and identification of weather conditions, whereas

the third and fourth stages are to identify transmission

poles, and to detect the level of encroached vegetation. If

the vegetation is encroached above a certain level (height)

an alarm will be made to the operators residing at the base

station to trim the endangering encroachments. The

framework for the algorithm is divided into four main steps

given below and shown in Fig. 3:

A. Initialization by reference and scene images,

B. Pre-processing (filtering and weather identification),

C. Identification of transmission pole,

D. Monitoring the level of encroached vegetation.

3.1 Initialization by reference and scene images

The first step in Fig. 3 is to capture some initial reference

frames. These initial reference frames are acquired when

the trimmers come and cut off the vegetation to a zone out

of danger within and outside ROWs. Those reference

frames are acquired every five minutes (from 9 a.m. to

5 p.m.) for about first initial 10 days after trimming as

there will be almost no change in the scene since vegeta-

tion growth is relatively a slow process regardless of the

weather conditions. The criteria for capturing the reference

Fig. 3 Flow diagram for

algorithm framework

422 Pattern Anal Applic (2015) 18:419–440

123



frames vary with weather conditions, e.g., in our case,

Malaysia is a tropical country and weather changes

abruptly but temperature remains warm throughout the

year, unlike other parts of the world where the weather is

hot in summer and cold in winter. The image frames

acquired after 10 days will be considered as scene frames

that will be analyzed for detection of vegetation

encroachments as shown in Fig. 4.

3.2 Pre-processing (filtering and weather identification)

Sunny, rainy, foggy, etc., weather conditions are identified

in all the reference and scene image frames in order to only

consider the image frames with appropriate illumination.

This is because handling uneven illumination for image-

processing applications operating outdoors such as video

surveillance, environmental control, and robotic vision is a

very challenging task. To overcome this problem, pattern

recognition techniques are used to extract features for the

automated classification of weather (illumination) condi-

tions in the images. Figure 4 shows the incoming images

(either reference or scene) to be firstly filtered by a median

filter of window size 3 9 3 to remove any unwanted noise.

Then gamma correction is used to adjust the brightness in

those frames.

3.2.1 Detection of rain

The rainy images are identified by detecting the raindrops

on windshield of the camera mounted on HV pole in real-

time environment by extracting the raindrop features hav-

ing the following characteristics [14]:

Fig. 4 Initialization and pre-

processing (filtering weather

and condition identification)
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• Uniform in shape (raindrops appear to be circular in

shape if seen through the windshield),

• Refraction of light (being clear and colorless refraction

takes place due to varying background).

We have used this method which has been published in

[14]. Figure 5a shows a rainy image through the wind-

shield. Principal component analysis (PCA) is used to

recognize the pattern of raindrops on the windshield of

camera by matching raindrop templates (frames) with the

incoming reference or scene frames [14]. At first M tem-

plates (frames with raindrops on the windshield) each of

width (W) and height (H) are captured for training, and

represented by one-dimensional vectors, that are normal-

ized to unit vectors given as: xi = (x1, x2,…, xN)T, where

N = W 9 H. Let X = [x1,x2,…,xM] be a matrix of M ran-

domly selected vectors from the test images, and its

Fig. 5 a Image seen through the windshield covered with raindrop. b Detection of raindrops in fair, rainy weather. c Raindrops identified in

heavy rain with a threshold S(K) C 0.74
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covariance matrix be Z = XXT. We compute the largest

eigenvalues Q of Z and its corresponding eigenvectors

{e1,e2,…,eQ}. The rain detection is done by computing the

correlation which finds the degree of similarity between the

one-dimensional normalized test (reference or scene)

image and the eigenvectors (raindrops in template frames).

If K is the test image area, then S(K) is given by:

S Kð Þ ¼
XQ

q¼1

K; eq

� �2 ð1Þ

The frame is detected as rainy if S(K) is greater than a

threshold (which is set to 0.5 owing to drastic raindrop

properties as compared to ordinary images) by computing

the similarity between the eigenvectors. Figure 5b and c

show results for the detection of raindrops on images

(reference and scene images) captured under different rainy

environments.

3.2.2 Detection of fog

Similarly, we used the method published in [15] for pre-

diction of foggy weather that utilizes the ‘dark channel prior

model’ to measure the fog level in an image. This dark

channel is computed for first prior reference frame which

will be a clear image observed visually at base station. The

image of dimension W 9 H is further divided into K 9 L

patches. We can get the darker intensity value in each patch

simply by finding the minimum of all. After that the dark

channel prior of this clear image is given by [15]:

Ldark
N ¼ Ldark

1 ; Ldark
2 ; . . .; Ldark

n

� �
ð2Þ

where n is the number of patches. After that, we use the

above-mentioned method to compute the dark channel of

the next new incoming reference or scene frame as [15]:

Cdark
N ¼ Cdark

1 ;Cdark
2 ; . . .;Cdark

n

� �
ð3Þ

Next, the difference between the two dark channels of the

corresponding patches is calculated. The average differ-

ence is computed as [15]:

D ¼

Pn

i¼1

Cdark
i � Ldark

i

�� ��

n
ð4Þ

At the end, a threshold (thresh) makes a decision whe-

ther the image is foggy or not. If D C thresh then the frame

is identified as foggy. Since, we are identifying the amount

of whiteness in an obscured foggy image; therefore

threshold (thresh) is set to 100 owing to average differ-

encing of foggy image (with majority pixels having

intensity value 255) from clear image having sufficient

illumination even during intense sunshine in the presence

of greenery.

3.2.3 Identification of similar reference and scene frames

Any frame detected to be rainy or foggy will be discarded

and our algorithm will wait for the next frame (reference or

scene) as in Fig. 4. The reference frame (for initial 10 days

as in step 1) free from fog and rain having sufficient illu-

mination will be sorted as a dataset (training set) at base

station with respect to date, time, weather, and contrast.

After 10 days till the time of vegetation encroachment, the

scene images captured are also filtered and detected to be

either rainy, foggy or low illumination (average intensity

value less than 100 due to green color of vegetation which

is common in tropical countries all the year). After that,

scene image is selected having the average intensity value

ranging between the values of highest contrast (HC) and

lowest contrast (LC) from a dataset of reference images.

After the identification of acceptable scene image, an

automated algorithm is developed to sort out at least two to

three reference frames from the entire dataset (reference

frames) having the same illumination (weather) as captured

scene image. This is done by using PCA, which retains the

variation in data as much as possible [16, 17]. Each ref-

erence/scene image taken is an 8-bit array of size W 9 H,

which can also be considered as a column vector having

dimension (W 9 H) 9 1. Let I1, I2, I3,…, IZ be the training

dataset of reference frames acquired for 10 days in an

outdoor environment under varying illuminations from

9 a.m. in morning up to 5 p.m. in evening as shown in

Fig. 6. Next compute the mean of the frames in the training

dataset, and difference of each image frame (of the dataset)

from the mean vector to form a matrix A = [U1, U2, U3,…,

UZ], where (W 9 H) 9 Z. After that find the covariance

matrix C = AAT, and compute its eigen vectors (v1, v2…,

vX) and eigen values (k1, k2,…, kX). The dimensionality is

reduced from X to Y space by keeping only the eigen

vectors corresponding the largest eigen values:

Îi � �I ¼
XY

u¼1

bi
uvi

u where Y\\X; i ¼ 1; 2; 3; . . .; Z ð5Þ

Represented in form of a vector containing the weights

as:

Xi ¼ bi
1 bi

2 . . . bi
Y

� �T ð6Þ

Equation (6) describes the contribution of each reference

frame in dataset, and is used to identify the illumination

pattern of an input scene image with encroached vegeta-

tion. Repeat this procedure to find the vector containing the

weights of scene image as:

X ¼ b1 b2. . . bY½ �T ð7Þ

To find the reference frame similar to scene frame

compute er ¼ X� Xik k2
, which is the Euclidean distance
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between the weights of scene and reference frames of

training dataset. Two to three reference frames that are

closer (having same illumination) to scene frame with

minimum distances are sorted out in ascending order by

using this procedure as in Fig. 7.

3.3 Identification of transmission poles

The HV transmission poles have different structures in

power engineering. But every power pole consists of

horizontal and vertical lines regardless of its power rating

[18]. Therefore, we identify the horizontal and vertical

lines of far away poles by using the Hough transform (as

in [19, 20]) for one reference frame out of sorted ones to

determine the horizontal and vertical thresholds to mon-

itor the dangerous vegetation ROWs as in Fig. 8. Hough

transform is used for feature detection especially straight

lines [21, 22]. It states that n number of co-linear points

on a straight line in x–y plane correspond to n number of

straight lines passing through a single point in parameter

space. For computational reasons, Rho (q)–theta (h) space

is used in Hough Transform instead of parameter space.

The detection of horizontal lines and threshold is given

below as:

Fig. 6 a Transmission line reference frames under intense sunshine at 12 pm in the afternoon. b Reference frames at 3 pm under normal

sunshine. c Reference frames under cloudy environment at 5 pm in evening

Fig. 7 a Scene image of a transmission line model having a tree. b Three sorted reference frames close to the scene image in illumination

Fig. 8 a Identification of

horizontal lines of far away

pole. b Identification of vertical

lines
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• Filter (convolve) the reference image IR(x,y,ti) with

horizontal mask as in Fig. 9b to find out the candidates

for horizontal lines, where ti is any time instant.

R x; yð Þ ¼ w x; yð Þ � IR x; yð Þ

¼
X1

n¼�1

X1

m¼�1

wn;mIR xþ n; yþ mð Þ ð8Þ

where R(x, y) is the resulting filtered image, and w(x,

y) shows the masking coordinates as in Fig. 9a used to filter

the reference image IR(x,y,ti).

• Detect the edges by using the Sobel edge detector.

BW  Apply Sobel Edge detector on R x; yð Þ

where BW is the output binary image.

• Apply Hough transform to BW, to identify horizontal

lines in the image.

L Apply Hough Transform on BW

• After that, only to detect the horizontal lines of far

away pole and a suitable horizontal threshold to mon-

itor the vegetation, a flowchart is shown in Fig. 10.

The above given flow diagram detects the horizontal

lines, and threshold for the far away pole to monitor the

vegetation. h_tresh is the horizontal threshold which shows

the detected horizontal line of the pole as in Fig. 8a.

To detect vertical lines and thresholds for the same pole

vertical mask shown in Fig. 9c is used to find candidates

for vertical lines. Using similar steps, Hough Transform

identifies vertical pole lines and two vertical thresholds to

monitor the encroachments within and outside ROWs as

given below:

v tresh  Two vertical thresholds vL; vR½ �

where v_tresh consists of two vertical thresholds vL and vR,

respectively, which represent the left and right most ver-

tical lines (thresholds) of the pole as shown in Fig. 8b.

Here it is important to mention that we did not emphasize

to find out the threshold for power line sag to monitor

dangerous encroachments, because HV conductors expand

or stretch during hot and cold weather, respectively.

Therefore, calculating the threshold for power line sag can

produce ambiguous results.

w-1,-1 w-1,0 w-1,1

w0,-1 w0,0 w0,1

w1,-1 w1,0 w1,1

-1 2 -1

-1 2 -1

-1 2 -1

-1 -1 -1

2 2 2

-1 -1 -1

(a) (b) (c)

Fig. 9 a Coordinate arrangement of 3 9 3 masking coefficients, b horizontal mask, and c vertical mask

Fig. 10 Flow diagram to detect the horizontal lines and threshold of

far away pole
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3.4 Monitoring the level of encroached vegetation

After detecting the horizontal and vertical lines, tracking is

used to detect the encroached vegetation in the scene image

IS(x,y,tj) with respect to reference images IR(x,y,ti) as

shown in Fig. 11. The vegetation tracking is done by fil-

tering the scene image with Laplacian kernel to enhance

the edges for better recognition of trees, and subtracting the

reference frames from the scene, by using segmentation

(background-subtraction) [23] that uses binarization as

given below:

IRS x; yð Þ ¼
1 if IS x; y; tj

� �
� IR x; y; tið Þ

�� ��[ T

0 otherwise

( )
ð9Þ

Where T is the threshold for binarization and its value is

set by taking the average intensity value of two to three

reference frames (sorted by procedure as explained in Sect.

3.2.3) which are similar to the scene frame having same

weather conditions irrespective of the encroached intru-

sions in them. The subtracted-binarized image will remain

only with the data including vegetation that are encroached

in the particular time duration since the reference images

are taken. Figure 11a shows the subtracted-binarized

image. It can be seen from the Fig. 11a that there are

unwanted pixels because of small illumination variations.

To overcome this, we have used horizontal and vertical

thresholds to discard illumination effects outside ROWs as

shown in Fig. 11b. Closing (dilation followed by erosion)

of an image by ‘square’ element of size 5 is used as a

morphological operator within ROWs to remove uneven

appearances as shown in Fig. 11c.

The level of excess vegetation is determined by com-

paring the pixel values of binarized reference image with

the subtracted-binarized image. This is done by placing few

horizontal monitoring thresholds within and outside ROWs

on the after-subtraction binarized frame. The procedure is

explained in the flowchart as in Fig. 12. After determining

the horizontal threshold h_tresh in Sect. 3, the binarized

image IRS (x,y) is further divided into eight monitoring

thresholds as in Fig. 13 of this section. The Fig. 13a and b

shows eight thresholds on the subtracted-binarized, and

scene image presenting the zones lines having different

colors as mentioned in Table 1. The height of HV trans-

mission poles vary from 15 to 55 m depending upon the

rating (including 500, 275, 33 kV etc.) of HV lines [24].

Fig. 11 a Subtracted-binarized scene image. b Utilization of horizontal and vertical threshold to discard uneven illuminations within and outside

ROWs. c Use of morphological operator to discard unwanted pixels

Fig. 12 Flow diagram to place the horizontal thresholds to detect the

level of encroached vegetation
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Table 1 shows zone lines with various colors relating to the

height of HV poles having different rating. In the Fig. 13b,

the highest threshold (zone) is the top most horizontal line

of the pole; therefore if we assume the pole to be 500 or

275 kV then its height relating to this highest threshold will

be 55 or 45 m as in Table 1. Therefore, any vegetation

encroaching to this level will have a height nearly 55 or

45 m and the algorithm will indicate it to be in dangerous

zone (where trees are interfering with the HV lines and

may cause blackouts). As eight zones are used to monitor

the HV lines, therefore practically each zone covers 7 or

6 m for 500 or 275 kV pole, respectively.

By using those monitoring zones, we identify the level of

overgrown vegetation within and outside ROWs. In real-

time environment, sometimes trees or shrubs appear to be in

safe zone with respect to power lines outside ROWs. But

during bad weather conditions those trees or shrubs can

interfere/strike the power lines or even can fall on them. To

overcome this problem, we monitor the vegetation outside

(either on left or right side) ROWs. For this purpose, our

algorithm tracks the level of vegetation to identify the zone

and after that it tracks whether the vegetation is at the safe

distance from power lines or not. The distance identification

is done by placing the vertical monitoring thresholds on left

and right side ROWs in a similar fashion to horizontal ones.

The overall status of the vegetation is found by comparing

the level of vegetation with the distance of vegetation from

the power lines. For example, if the level of vegetation is in

danger zone and distance from power line is also in danger

zone then the overall status of the vegetation would be

dangerous and vice versa as in Fig. 13c.

3.5 Depth estimation of scene using triangulation

In this step, we have proposed a method based on analyt-

ical geometry to extract 3D coordinates of the scene. Depth

from Triangulation (DfT) is used to find out the distance

between the camera and trees (within and outside ROWs)

in meters to ensure a safe distance between the transmis-

sion pole (camera) and the trees. This technique firstly

extracts the overgrown vegetation in the scene by using

background-subtraction shown in Fig. 13. Secondly, it

identifies the ground location of vegetation in the scene

because the centroid does not represent the true location of

the image in 3D world coordinates. The proposed algo-

rithm assumes a wireless camera installed at a known

Fig. 13 a Thresholds placed on subtracted-binarized scene image to identify height of vegetation, b thresholds with different colors presenting

various zones, c horizontal and vertical thresholds identify zone of encroached vegetation outside ROWs

Table 1 Monitoring thresholds

represented by various colors
Zone line Height of HV transmission pole w.r.t rating Color

500 kV (m) 275 kV (m) 132 kV (m) 66 kV (m) 33 kV (m)

Alarming 55 45 35 25 15 Red

Dangerous 48 39 31 22 13 Orange

High 41 34 26 19 11 Brown

Critical 34 28 22 16 9 Purple

Tolerable 28 23 18 13 8 Light brown

Moderate 21 17 13 10 6 Yellow

Low 14 11 9 7 4 Green

Normal 7 6 4 3 2 Light blue
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height and a vertical angle on the pole; this is true for our

conditions. In this model, the vegetation coordinates (X, Y,

Z) are calculated given the camera height (h), the vertical

angle (h) and the field of view angle (FOV).

Figure 14 shows a camera setup where the trapezium

green area shows the area covered by the camera view. The

camera is installed at a height (h) from the ground with a

vertical angle (h) and the field of view angle (FOV). The

horizontal field of view (FOVH) for the IMB400 camera is

44.78, and vertical field of view (FOVV) is 608 [9]. Larger

camera height covers larger viewing area, and field of view

changes only with the zoom of camera and greater field of

view means coverage of larger area. The vertical angle (h)

is constrained by the relationship h\ 908, the trigono-

metric relation will produce erroneous results if the vertical

angle exceeds the limit. The above mentioned parameters

are generally known for all cameras and are calibrated

during the installation process.

In Fig. 14, there is a tree (vegetation) at location P(i, j)

on the image having a width (W) and height (H). Thus,

larger the image resolution, the finer the image element is

and it can have more accurate localization of the tree

location. However, if the size of the covered area is large

(the camera height is large or the field of view is large), the

resolution is reduced and the pixel element will be larger in

size. Thus, there is a larger quantization error [25]. In

Fig. 14, the rotation angle (/) and the vertical angle (w) are

computed for the tree located at point P(i, j) as given below

[25]:

u ¼ i�W

2

	 

� FOVH

W

	 

ð10Þ

w ¼ hþ H

2
� j

	 

� FOVV

H

	 

ð11Þ

Then the distances Y and X are computed using these

two angles. Given the vertical angle (w) and the camera

height (h) the distance (Y) in Fig. 14 is computed by using

Eq. (12).

Y ¼ h� tan wð Þ ð12Þ

Then, given the distance (Y) and the rotation angle (/),

the distance (X) in Fig. 14 is computed using Eq. (13).

X ¼ Y � tan uð Þ ð13Þ

Now by using the distances (X) and (Y) and the angles

(w) and (u), the 3D coordinates of the tree at point P(i, j)

are computed assuming that the center of coordinates is

beneath the camera exactly as shown in Fig. 14.

L2 ¼ X2 þ Y2 ð14Þ

Z2 ¼ h2 þ L2 ¼ h2 þ X2 þ Y2 ð15Þ

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ X2 þ Y2

p
ð16Þ

Z ¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 wð Þ sec2 uð Þ

q
ð17Þ

X and Y in Eqs. (13) and (12), respectively, denote the

vegetation coordinates with respect to ground of the scene.

Z in Eqs. (16) and (17) is the depth of field or the actual

distance between the vegetation and the camera. The

algorithm for depth estimation of vegetation can be

Fig. 14 Computing the 3D

coordinates of vegetation at

location P(i, j) using depth from

trangulation (DfT)

Fig. 15 Flow diagram of DfT Algorithm
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summarized in details in the steps below and also in the

flow diagram of Fig. 15. The input parameters include:

Camera intrinsic parameters [vertical field of view (FOVV),

horizontal field of view (FOVH)], camera extrinsic

parameters [camera height (h), camera vertical angle (h)],

and image parameters [width (W), height (H), and moving

object location P(i, j)]. The algorithm as a whole computes

the angles, world coordinates, and depth of field (Z). The

output consists of P(i, j) $ P(X, Y, Z).

The proposed technique finds out the distance between

the camera (pole) and the trees. As the distance between

the two poles is known so the distance of the tree from the

far away pole can also be calculated as in Fig. 16a. For our

conditions, the tree can be either on backside of the far

away pole or in the front. By calculating the distance

between the tree and the camera we can determine whether

the tree is at the backside or in front of the far away pole as

in Fig. 16b. One thing is that our algorithm can track only

the trees that are fully in its field of view (FOV). By

looking at Fig. 16b, it can be seen that the algorithm will

find out accurate distance between camera and tree up to

halfway distance in front of the far away pole. In Fig. 16b,

the negative distance indicates that the tree is in front of the

far away pole, and if the value is positive it means that the

tree is at the back side of the pole as in Fig. 16a.

If the transmission network is installed on a hilly surface

as in Fig. 17a, the cameras are placed on the similar pattern

as the terrain. Placement of two cameras is solution to the

problem where the terrain is highly non-uniform to over-

come the blockage of whole scene as in Fig. 17b. The

cameras are installed in a similar manner so that vertical

angle of cameras with respect to terrain should be less than

908 to produce correct results. Similarly, two cameras will

be used in region of highly non-uniform terrain to monitor

those encroachments that may not be seen by camera on the

far away pole due to blockage of the scene.

By using thresholding we were able to find out the zone

of vegetation as in Table 1. Now, by finding out the depth

and the 3D location of tree that are located on the ground

the height of the tree can be computed by constructing a

geometrical model using the bottom point and the top point

of the object. Then similar triangles in the scene are used to

compute the height. In Fig. 18, the ground distance (Z1) is

computed using base point (BP) and the ground distance

(Z2) is computed using the triangulation algorithm from

top point (TP). Then by using similar triangles, the tree

height (HE) is computed using equation 18.

HE ¼ h� Z2� Z1

Z2
ð18Þ

3.6 Identification of distance between HV lines and trees

in vicinity using depth from triangulation (DfT)

In real-time environment, some vegetation outside ROWs

appears to be in safe zone with respect to HV overhead

lines. However, owing to bad weather those dangerous

trees can strike or even fall on HV lines. Therefore, it is

necessary to maintain a suitable clearance distance from

those encroachments. To overcome this problem, distance

between excess outside vegetation and HV transmission

lines is determined. This is done firstly by monitoring the

encroachments left and right side ROWs. For this purpose,

the algorithm has already determined the level and actual

height of vegetation as in fourth and fifth step, respectively.

After that, the algorithm is used to identify the zone

(dangerous, high, medium, etc.) whether the encroached

vegetation (outside) is at the safe distance from power lines

by placing the predetermined threshold levels.

After determining the zone of the encroached vegetation

with respect to the HV lines and poles, a new analytical

geometry is proposed as in Fig. 19 that will utilize data

from the above triangulation based technique to find out the

Fig. 16 a Distance between the far away pole and the tree, and b distance between the far away pole and the tree in front of pole
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Fig. 17 a Wireless cameras installed on the poles in a similar manner as trainee. b Installation of two cameras on a pole passing through a highly

non-uniform trainee due to blockage of scene

Fig. 18 Computing height of

the tree

Fig. 19 Model to compute the

distance between the HV

transmission lines and the

encroached vegetations outside

ROWs
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accurate distance between the encroached vegetation and

the HV lines.

Where

(X1,Y1) = Coordinates of the transmission pole 1.

(X2,Y2) = Coordinates of the transmission pole 2.

(XV,YV) = Coordinates of the vegetation/tree outside

ROWs.

(XP,YP) = Coordinates on the HV transmission lines.

D1-V = Distance between the vegetation and pole 1.

D2-V = Distance between the pole 2 and vegetation/tree.

DP-V = Distance between the vegetation and HV lines.

D1-P = Distance between the pole 1 and intersection

coordinates on HV lines.

DTOTAL = Distance between two transmission poles.

As shown in Fig. 19, the distance from the encroached

vegetation to the HV transmission lines can be calculated

by determining the coordinates of the intersection

between the two lines. The calculation steps are given

below:

The equation for transmission line is given as:

mTXline ¼
Y2 � Y1

X2 � X1

; hTXline ¼ tan�1 mTXlineð Þ ð19Þ

Y � Y1 ¼ mTXline X � X1ð Þ ð20Þ

Equation for estimating perpendicular distance between

the encroached vegetation (outside the HV transmission

lines) and the HV lines connecting the two transmission

poles is given as:

hV ¼ hTXline � 90�; mv ¼ tan hVð Þ ð21Þ
Y � YV ¼ mV X � XVð Þ ð22Þ

The intersection of the two lines is:

YP � Y1 ¼ mTXline XP � X1ð Þ ð23Þ
YP � YV ¼ mV XP � XVð Þ ð24Þ

Subtracting Eq. (23) from (24), we get:

YV � Y1 ¼ mTXline � mVð ÞXP þ mV XV � mTXlineX1 ð25Þ

The coordinates (XP,YP) of the respective point on the

HV transmission lines is:

XP ¼
YV � Y1ð Þ � mV XV � mTXlineX1ð Þ

mTXline � mV

ð26Þ

YP ¼ mV XP � XVð Þ þ YV ð27Þ

Thus, the distance between the outside vegetation and

the HV overhead lines DP-V is:

DP�V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XV � XPð Þ2þ YV � YPð Þ2

q
ð28Þ

The distance between the outside vegetation and the far

away pole is given below:

D2�V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

P�V þ D2
P�2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

P�V þ DTOTAL þ D1�Pð Þ2
q

ð29Þ

where DP�2 ¼ DTOTAL � D1�P.

The coordinates (X1,Y1), (X2,Y2) and (XV,YV,D1-V) can be

found by using the above triangulation method. By using

these coordinates and the respective slopes mV and mTXline,

the coordinates (XP,YP) can be calculated. Therefore, after

finding the transmission lines coordinates (XP,YP) corre-

sponding to the vegetation coordinates (XV,YV) as in

Fig. 19 distance formula is applied to find out the distance

between the transmission lines and the vegetation outside

ROWs as in Eq. (29). The equation can also be used to find

out the distance between the far away transmission pole 2

(X2,Y2) and the vegetation (XV,YV) outside ROWs. Thus,

overall status of the vegetation is found by comparing the

level (height) of vegetation, and the distance from HV

lines. For example, if the level of encroached vegetation

outside the HV lines is in danger zone and distance of

vegetation from the HV transmission lines is also in danger

zone then the overall status of the vegetation encroachment

shown by the algorithm would be dangerous and vice

versa.

4 Results and discussion

4.1 Testing and validation of proposed method

In order to validate the proposed method, we have carried

out a number of tests by making various models of vege-

tation growth as in Fig. 20. Thus after taking snapshots

with clear weather we apply Sect. 3.4 (vegetation tracking

using background-subtraction) of methodology which uses

horizontal thresholds to find the level of encroached veg-

etation within and outside ROWs, and also vertical

thresholds to ensure a safe clearance from the vegetation in

vicinity (outside ROWs). Thus, we are successful in finding

overall status of encroached vegetation within and outside

ROW for different encroachment scenes. Figure 20a, b and

c shows the plant (tree) within ROWs having medium,

high, dangerous, and high levels, respectively. But this

technique causes ambiguities owing to magnification

problems due to the fact that tree of same height near (less

distance) the camera appears to be bigger rather than the

same tree at a greater distance from the camera. Therefore,

we have overcome this problem by placing more number of

horizontal and vertical thresholds as in Sect. 3.5 of the

methodology.

However, by applying DfT algorithm we can get more

accurate results by firstly finding out the distance of tree

from both poles (camera pole and the far away pole). The
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results of the vegetation detection are in the form of bottom

most point and the top most point of tree as it is shown in

Fig. 21 where these two points will be used for depth

estimation and computing the height of the tree in the

image. The input to the DfT method is in a form of two 2D

points which represents the bottom and the top point of the

detected tree blob. The DfT algorithm computes the ground

location of the tree (in meter) and the distance between the

tree and the camera (depth of field). In addition, the algo-

rithm also returns the height of the tree Fig. 22a shows a

scene with a tree, where the ground truth (GT) depth

(distance) between the tree and the poles is acquired by

using a laser range finder (LRF). The Fig. 21b shows the

labeled diagram which shows the ground Truth and the

computed depth (CD). The vertical angle and height of

camera (external parameters) are calibrated by using

plumbline (to measure angle) and with respect to height of

pole. For scene in Fig. 22a vertical angle of camera = 868,
height of the camera (pole) = 0.95 m, distance between

the two poles = 3.87 m.

The standard distance between the power poles depends

upon the transmission line rating [24]. For 33 kV power

line, the minimum distance is 90 m, whereas for 500 kV

line the minimum distance is 400 m. The ground truth and

the computed depth between the camera pole and the tree

are 2.43 and 2.39 m, respectively. For far away pole the

ground truth distance is 1.44 (3.87-2.43) m, and calcu-

lated distance is 1.47 m. If we consider the total distance

(3.87 m) between the two poles equals the 400 m (standard

distance for HV lines [24]), then calculated distance for

Fig. 20 Snapshots of various

encroachments under different

illuminations
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Fig. 21b will be 2.39 m multiplied by factor (400/

3.87 = 103.35) which would be 247.95 m for actual HV

Overhead line scenario. Table 2 presents different scenes

containing tree at a certain distances from the camera

(pole) showing XY location, ground truth using laser range

finder, calculated distance by applying DfT, and percentage

computational error. In Table 2, the scene 4 and 5 shows

the tree to be located in front of the far away pole similar to

Fig. 16b and having greater ground truth and calculated

distance with respect to distance between the two poles.

Similarly, Fig. 23 shows the height of tree calculated in

meters as in Sect. 3.5. The ground truth height taken by

laser range finder is 0.87 m, and calculated height (CH) is

0.88 m. Table 3 contains the image frames having the tree

with different heights. Table 3 shows the calculated depth

for base point (BP) and top point (TP) location, ground

truth height, calculated height, and the percentage com-

putational error. The standard height of the power poles

vary from 15 to 55 m depending upon transmission line

rating which can be interpolated with our experimental

work to present real time environment as in case of dis-

tance between the power poles explained above. Using

same steps, the distance between the trees outside ROWs

and the power lines shown in Fig. 24 can be calculated by

utilizing the data from DfT. Table 4 contains the image

frames having the tree outside ROWs with different dis-

tances from power lines.

It is clear from the above results that proposed depth

estimation technique has a good computational accuracy.

However, there are three sources of possible errors in the

proposed method that are; image resolution, camera height,

camera pitch angle and the location of vegetation in the

image. Other inputs such as image size and field of view

are standard and can be obtained from the camera speci-

fications. [25] shows error due to 1 % error in measuring

camera height, camera angle or vegetation location. For the

tree location 1 % error is relative to the image size. For

example, if the image size is (640 9 480), 1 % error means

6 pixels error in width and 5 pixels error in height [25]

shows a very comprehensive error analysis for these three

types of errors. This algorithm is very sensitive to error in

the vertical direction compared to the horizontal one. This

is because the magnification increases drastically in the

vertical direction as compared to the horizontal one. Since

the vertical angle is more sensitive to error as compared to

height of camera therefore, we have shown the accuracy of

Fig. 21 Detection of top most

and bottom most points of a tree

Fig. 22 a Scene containing a tree. b Snapshot showing the GT and the calculated distance between the tree and the poles using DfT
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DfT technique in Fig. 25 for real time scenario as the

distance between the HV poles is maximum up to 400 m.

Figure 25 shows computed depth to be 244 m for a tree

located at 250 m of actual distance owing to 1 % error in

vertical angle (which is 2.48 % in case of vertical angle (h)

as presented in [25]) if we use 640 9 480 resolution

camera for HV line monitoring.

4.2 Graphical user interface (GUI) for system

A GUI is developed to monitor the encroaching vegeta-

tion/trees that can endanger the HV lines. The real time

data (containing reference and scene images of indoors

and outdoors) is captured and passed through this GUI

embedded with the algorithm explained above. GUI is

Fig. 23 a Frame containing a high tree. b Height of the tree in meters closer to the power lines

Table 2 Analysis of the depth of scene for encroachments
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shown in Fig. 26 and it shows the status of tree within

and outside ROWs. On the bottom right corner of GUI it

can be seen that the user can load the reference and scene

images to get the results. The loaded reference and scene

images are displayed at the top middle part of the GUI

under heading ‘image display’. The top left part of the

Fig. 24 a A tree outside ROWs in zone out of danger. b A Height level tree that can fall on power line outside ROWs

Table 3 Analysis for height of the tree
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GUI shows the data relating to transmission line which

includes:

• Transmission Pole Coordinates.

• Transmission Line Rating.

• Temperature.

• Weather Condition.

• Height of the Power line Sag.

• Distance between the two Poles.

Firstly, the transmission pole coordinates will show the

latitude and longitude for the location of real-time HV

poles installed by electrical utilities at the various locations

within the electrical distribution network. After that the

transmission line rating shows the pop-up menu to select

the rating (including 500, 275, 132, 33, and 15 kV) of HV

Fig. 25 Error analysis (for 1 %

error in vertical angle) for a tree

placed between two HV poles

(that are 400 m apart)

Table 4 Results analysis for distance between tree outside ROWs and power lines
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lines as discussed in Sect. 4 of the methodology. The rest of

parameters include the temperature, weather condition of

the scene, height of the power line sag, and the distance

between the two HV poles ROWs. The reference image at

the top contains eight horizontal zones (levels) on it pre-

sented by different colors as shown at the top right of the

GUI.

The last part of the GUI shows the monitoring results

within and outside (left or right side) ROWs. For moni-

toring within ROWs, it shows the level of encroached

vegetation/tree e.g., the GUI shows a tree within ROWs in

a medium zone. Whereas for monitoring outside ROWs,

the GUI shows the level of vegetation, distance between

the vegetation and HV power lines, and the overall status

of vegetation/trees either at the left or right side of the pole.

Whereas, the bottom left part of the GUI shows the DfT

parameters which include:

• Distance between the camera (pole) and the tree.

• Distance between the far away pole and the tree.

• Height of the tree.

• Location of excess tree w.r.t. far away pole.

The above mentioned parameters will show the values

according to the real-time transmission line standards,

e.g. for 500 kV HV lines the GUI shows distance

between the camera (pole) and the tree to be 232.04 m,

distance between the far away pole and tree to be

167.96 m, height of the tree to be 29.65 m, and the

location of the tree to be behind the far away pole.

Therefore, this GUI has great a potential to be utilized

for the online monitoring of power line against dangerous

encroachments ROWs.

5 Conclusions

In this paper, we have presented a new non-airborne based

method that consists of a single wireless cameras integrated

on transmission poles ROWs that will transmit the data to

base station by communicating with one another. At the

base station, images with appropriate illumination (sunny

or cloudy weather) will only be used for further processing

regardless of rainy and foggy images that will be imme-

diately discarded after identification by predominant pat-

tern recognition methods (which includes: PCA and ‘dark

channel prior model’). After that image processing based

tracking algorithm is used to detect the vegetation, and a

depth from triangulation based method is used that iden-

tifies actual 3D coordinates of the encroached vegetation.

That helps in locating the accurate height of trees, distance

between trees and poles, and distance between dangerous

trees and HV lines outside ROWs. On the other hand, the

Fig. 26 GUI shows the vegetation encroachments and results
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operators at base station will order the trimmers to cut-off

the vegetation wherever it is required. The major advantage

of this method is that it requires investment only once for

setting up the camera kits. Thus, the use of a single camera

proved to be more accurate and less time consuming, as it

can provide actual parameters of the scene.
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