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Abstract This paper describes a discrete wavelet trans-

form-based feature extraction scheme for the classification

of EEG signals. In this scheme, the discrete wavelet trans-

form is applied on EEG signals and the relative wavelet

energy is calculated in terms of detailed coefficients and the

approximation coefficients of the last decomposition level.

The extracted relative wavelet energy features are passed to

classifiers for the classification purpose. The EEG dataset

employed for the validation of the proposed method con-

sisted of two classes: (1) the EEG signals recorded during

the complex cognitive task—Raven’s advance progressive

metric test and (2) the EEG signals recorded in rest condi-

tion—eyes open. The performance of four different classi-

fiers was evaluated with four performance measures, i.e.,

accuracy, sensitivity, specificity and precision values. The

accuracy was achieved above 98 % by the support vector

machine, multi-layer perceptron and the K-nearest neighbor

classifiers with approximation (A4) and detailed

coefficients (D4), which represent the frequency range of

0.53–3.06 and 3.06–6.12 Hz, respectively. The findings of

this study demonstrated that the proposed feature extraction

approach has the potential to classify the EEG signals

recorded during a complex cognitive task by achieving a

high accuracy rate.

Keywords Discrete wavelet transform (DWT) � Machine

learning classifiers � Electroencephalography (EEG) �
Cognitive task

Introduction

Electroencephalography (EEG) is a neuroimaging tech-

nique for recording the brain’s electrical potentials, which

are commonly used to study the dynamics of neural

information processing in the brain, and diagnose brain

disorders and cognitive processes. Large amounts of EEG

data are recorded and it is not possible to analyze EEG data

visually [1]. Therefore, there is a strong demand to extract

relevant information from EEG recordings for the proper

evaluation and understanding of the desired cognitive

processes. The main steps in the process of extracting

relevant information from EEG recordings include pre-

processing, feature extraction and classification [2].

Extracting relevant features is among the most critical and

significant steps for EEG data classification. The reason

behind this is that the feature extraction step has a direct

impact on the systems classification performance [3]. If the

extracted features are not expressive for a certain problem,

then the classification performance will not be satisfactory.

In such a case, the classification method may be highly

optimal for the problem but due to inadequate features, the

method may not provide good classification results. Hence,
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extracting suitable features from EEG signals to get high

classification performance is mandatory.

Recently, a multi-disciplinary research area—brain

computer interface (BCI), involving researchers from

neuropsychology, engineering, computer science, mathe-

matics and neuroscience attracted a lot of interest as it has

the potential to provide control capabilities and commu-

nication to people facing severe motor disabilities. BCI is a

system that enables a physically disabled subject to utilize

brain signals to control a device without using any muscle

activity. In other words, it uses the brain signals and

communicates with the external devices for control. Most

of the research in BCI and related research has been per-

formed using electroencephalogram (EEG) signals. Any

good practical implementation of the BCI system demands

an efficient brain signal processing scheme that could

extract features and perform classification [4]. Several

methods have been reported for feature extraction, which

include time domain, frequency domain, and wavelet

transform- (WT) based features [3]. However, WT-based

analysis is highly effective, because it deals better with the

non-stationary behavior of EEG signals than other meth-

ods. Wavelet-based features, including wavelet entropy [5],

wavelet coefficients [2], and wavelet statistical features

(mean, median, and standard deviations) have been repor-

ted for normal EEG analysis as well as in clinical appli-

cations [6, 7]. Details on the performance of time domain,

frequency domain and wavelet-based techniques employed

in EEG classification for cognitive tasks and/or BCI

applications are provided in the related work section and

the classification accuracy of these techniques are provided

in the discussion section. Most of these studies have

reported good results in discriminating cognitive tasks of

different workloads in simulated and/or real EEG record-

ings [8]. Hence, the experimental design used in these

studies could not find dynamics in the performance of a

participant in a unique task with a constant cognitive

workload. Therefore, this study presents EEG signal clas-

sification in a cognitive task with a constant workload from

a baseline task using wavelet-based feature extraction and

machine learning classifiers.

The purpose of this study has been to extract suitable

wavelet-based features (relative wavelet energy) for the

classification of EEG signals. The EEG dataset used for the

validation of the proposed method consisted of two clas-

ses—EEG recordings in a complex cognitive task (class 1),

and EEG recordings in a rest condition—eyes open (class

2). The paper is structured as follows: ‘‘Related work’’

section reviews the related previous studies of feature

extraction methods, ‘‘Materials and methods’’ section

describes the materials and methods, ‘‘Experimental results

and discussion’’ section presents the results and discussion,

and ‘‘Conclusion’’ section concludes the paper.

Related work

In literature, the time domain, frequency domain, and

wavelet-based feature extraction techniques for classifica-

tion of EEG signals have been reported [9–11]. These

techniques use the time and frequency domain features in

the classification models to determine the optimal feature

set and combine with classifiers that gives the highest

classification performance. Here, we present the recent

related work of the time domain, frequency domain and

wavelet-based feature extraction methods for classification

of EEG signals in cognitive tasks. Time domain features

mainly include sample entropy [12], approximate entropy

[12], permutation entropy, fractal dimension, Hjorth

parameters [13], Hurst component [10], and Lyapunov

exponent [14]. Frequency domain features include EEG

absolute power, relative power and power ratio in different

frequency bands [15]. The time–frequency analysis include

wavelet-based feature extraction and stockwell transform

[16]. Hariharan et al. [16] have used the stockwell trans-

form for feature extraction and the support vector machine

(SVM) for classification of EEG signals of different cog-

nitive tasks. The authors have reported classification

accuracy between 84.72 and 98.95 %. Noshadi et al. [17]

have used empirical mode decomposition and both time

and frequency domain features for cognitive task classifi-

cation. The authors have employed linear classifiers (k-

nearest neighbor and linear discriminant analysis) and have

reported 97.78 % classification accuracy. Guo et al. [8]

have used weighted SVM with immune feature and clas-

sified cognitive tasks with 85.4–97.5 % accuracy. Zhang

et al. [18] have reported 72.4–76.4 % classification accu-

racy using high frequency power and Fischer’s discrimi-

nant classifier for EEG classification in cognitive tasks.

Hosni et al. [19] utilized the EEG power feature and SVM

classifier with a radial basis function (RBF) kernel, and

have classified three cognitive tasks with 70 % accuracy.

Xue et al. [20] have used the wavelet packet transform for

feature extraction with the RBF classifier, and have

achieved 85.3 % accuracy. Zhiwei and Minfen [21] have

used the wavelet pack entropy feature and SVM classifier

and have shown 87.5–93 % accuracy for discriminating a

baseline task from a cognitive task. The above cited studies

have used a database of seven subjects who performed five

tasks—baseline (eyes open) task, multiplication, visual

counting, mental letter composing and geometric object

rotation. The database was originally reported by Keirn and

Aunon [22] at Colorado State University. The database

consisted of only seven subjects and the experimental

cognitive tasks were simple. Further, the majority of the

studies utilized very few subjects for classification; for

example, Zhiwei and Minfen [21] have used only two

subjects’ data while Nai-Jen and Palaniappan [23] have
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used only four subjects’ data. Additionally, the database

had a variable cognitive load in different tasks.

Many other studies have worked on EEG classification

in cognitive tasks using different databases recorded by the

authors or adopted from past studies. Such as, Lin and

Hsieh [24] have classified cognitive tasks using EEG power

features with neural network classifier and have reported

78.31 % accuracy. Rodrıguez-Bermudez et al. [25] have

employed time, frequency and wavelet-based features with

the SVM classifier and reported 67.96–80.71 % accuracy.

This study has used four subjects’ EEG data and a linear

classifier for discrimination of cognitive tasks. Karkare

et al. [26] have used a scaling exponent and classified two

groups who performed complex cognitive tasks using an

artificial neural network, and have reported the classifica-

tion performance at over 80 % accuracy. These studies

reported low classification accuracy and most of them have

used non-linear classifiers, such as neural network and

kernel-based SVM, which are time consuming in building

models for classification. The standard psychometric cog-

nitive task, e.g., Raven the progressive metric test, has been

reported by Jahidin et al. [27]. They have utilized the EEG

power feature with the neural network classifier and

achieved the 88.89 % accuracy. However, this study clas-

sified within the group classification for high and low

cognitive processes. From the literature, we have found a

gap for this study, i.e., efficient feature extraction and

classification for EEG signals for an offline dataset as well

as applicable for online EEG applications.

Materials and methods

This section describes the details of the materials and

methods used during this study, which include the experi-

mental tasks, dataset description, discrete wavelet trans-

form and relative energy computation, description of

classifiers and the discussion of their performance

parameters.

Participants

All of the eight healthy participants were graduate students

in Universiti Teknologi PETRONAS. They participated

voluntarily in this study. All of them were male, right

handed and aged between 24 and 32 years (28.6 ± 4.20)

[28]. At the time of the experiment, they were free from

any medication, drugs, neurological disorder, or head

injury that may have affected the experimental results.

They had normal or corrected to normal vision. Previously,

they had not experienced the cognitive task used in this

study.

Consent form and ethics approval

This research study was approved by the Research Coor-

dination Committee of Universiti Teknologi PETRONAS,

Malaysia [28]. All the participants had signed the informed

consent form before starting the experiment. The consent

document had a brief description of this research study

concerning humans.

Experimental tasks

Eyes open task

In this task, there was no cognitive task to be performed.

The participants were instructed to sit relaxed and try to

think of nothing in particular. To maintain the concentra-

tion of the participants, they were asked to focus their

attention on a point displayed at the center of a computer

screen during the EEG recording. The EEG recording of

this task was used as a baseline signal.

Raven’s advance progressive metric (RAPM)

RAPM is a standard psychometric test used to measure the

intellectual ability. It consists of two sets (I&II). Set-I is

used for practice, which contains 12 problems; Set-II

consists of 36 problems used to measure the general cog-

nitive ability. Each problem is a diagrammatic structure

with some missing information and with eight multiple

choices to complete the diagram’s missing part. Each

correct answer has a score of ‘1’ and a score of ‘0’ is

assigned for each incorrect answer. The score range is 36

and the administration time for Set-I and Set-II is 10 and

40 min, respectively (for more details about the RAPM,

see [29, 30]).

Dataset

The dataset consisted of eight healthy volunteers’ EEG

data, which were recorded while performing the RAPM

test and eyes open condition [28, 31]. The details about the

procedure of this RAPM, EEG data recording and pre-

processing can be found in our previous studies [28, 31].

For feature extraction and classification, the dataset was

organized into two classes. The class 1 represented all of

the eight participants’ EEG data recorded during the

RAPM task and the class 2 represented all of the eight

participants’ EEG data recorded in the eyes open condition.

In the RAPM task, each participant solved 36 problems.

Thus, each participant was observed 36 times (maximum)

in the RAPM task, resulting in 36 instances corresponding

to a single participant. There were some un-attempted (not

answered) problems with a few participants. The missing
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problems in all of the participants were excluded and we

were left with a total of 280 instances for class 1 (8 par-

ticipants 9 36 problems = 288, excluding missing prob-

lems ) 280 instances). Similarly, each participant’s eyes

open EEG recording (class 2) was segmented according to

the corresponding numbers of the problem solved in the

RAPM task (class 1). Hence, we have balanced both the

classes in terms of instances for classification, i.e., 280

instances for each class.

Discrete wavelet transform (DWT)

The DWT is widely used for the time–frequency analysis

of biomedical signals [2, 32], especially in an EEG signal

analysis due to its non-stationary characteristics. The DWT

employs extensive time windows for low frequencies and

short time windows for higher frequencies, resulting in

good time–frequency analysis. The DWT decomposition of

a signal uses successive high pass and low pass filtering of

the time series and two down samplers by 2. The high pass

filter g(n) is the discrete mother wavelet and the low pass

filter h(n) is its mirror version [33]. The mother wavelet of

the Daubechies wavelet (db4) and the corresponding scal-

ing function are shown in Fig. 1.

The output of the first high pass and low pass filters are

referred to as the approximation and detailed coefficients,

represented by A1 and D1, respectively. The A1 is further

disintegrated and the procedure is repeated till the specified

number of decomposition levels is reached (seeFig. 2) [32, 33].

The dilation function uj;k nð Þ is dependent on the low

pass filter, and the wavelet function wj;k nð Þ is follows the

high pass filter, which is denoted as follows.

uj;k nð Þ ¼ 2j=2h 2jn� k
� �

ð1Þ

wj;k nð Þ ¼ 2j=2g 2jn� k
� �

ð2Þ

wheren = 0, 1, 2,…,M-1; j = 0, 1, 2,…, J-1; k = 0, 1, 2,…,

2j-1; J = log2(M); and M is the length of the signal [34].

The maximum level of decomposition is specified

depending on the principal frequency components in the

given signal [2]. The coefficients of the DWT are referred

to as the dot product of the original time series and the

designated basis functions. The approximation coefficients

Ai and the detailed coefficients Di in the ith level are

denoted as [2]:

Ai ¼
1
ffiffiffiffiffi
M

p
X

n

x nð Þ � uj;k nð Þ ð3Þ

Di ¼
1
ffiffiffiffiffi
M

p
X

n

x nð Þ � wj;k nð Þ ð4Þ

where k = 0, 1, 2,…, 2j-1 and M is the length of the EEG

time series in the discrete points.

Relative and total wavelet sub-band energy

The wavelet energy at each decomposition level i = 1,…,

L is computed as follows:

EDi
¼
XN

j¼1

Dij

�� ��2; i ¼ 1; 2; 3; . . .; L ð5Þ

EAi
¼
XN

j¼1

Aij

�� ��2; i ¼ L ð6Þ

The ‘L’ is the maximum level of decomposition. Hence,

from Eqs. 5 and 6, the total energy can be defined as:

ETotal ¼
XL

i¼1

EDi
þ EAL

 !

ð7Þ

The normalized energy values represent the relative

wavelet energy.

Er ¼
Ej

ETotal

ð8Þ

where Ej ¼ EDi¼1;...;L
orEAi¼L

Fig. 1 Mother wavelet and

scaling function (db4)
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Feature extraction using DWT

The relevant information extraction from raw signals is a

critical step in EEG pattern classification due to its direct

influence on classification performance. The illustrative

representation of the proposed feature extraction scheme is

presented in Fig. 3. The band pass (1–48 Hz) EEG signal

was decomposed into sub-band frequencies by using the

discrete wavelet transformation with the Daubechies wave-

let of order 4 up to level 4. The approximate and detailed

coefficients were computed (see Fig. 4 as an example).

Table 1 represents one channel’s sub-band percentage rela-

tive energy and its frequency range of a single subject. The

total and relative sub-band energies were computed from the

extracted wavelet coefficients. The relative wavelet energy

ErD1;ErD2; . . .;ErA4 was calculated using Eq. 8.

The relative energy features were computed for all of

the participants and all of the channels’ data. Accordingly,

the feature matrix of relative energy for a single participant

in each EEG task and each sub-band (detailed or approx-

imation) became as follows:

Relative Energy FeatureMatrixðFr
!Þ ¼ ½ErA4ð280�128Þ� ð9Þ

where the number of channels was 128, number of

instances in each class was 280, D1*D4 and A4 were the

detailed and approximation coefficients. Accordingly, the

ED1ð280�128Þ represented the relative energy feature matrix

of the first detailed coefficients for all of the eight partic-

ipants in each class.

Classification methods

A classifier is a technique that utilizes various independent

variable values (features) as input and predicts the corre-

sponding class to which the independent variable belongs

[12]. In the EEG signal analysis, the features can be any

kind of extracted information from the signal, such as

energy, entropy, power etc. and the class can be the type of

task or the stimulus used during the recording. A classifier

has a number of parameters that need to be learned from

training data. The learned classifier is a model of the

association between the features and the classes. For

example, for a given feature x of a class y, the classifier is a

function f that predicts the class y = f(x). After the learn-

ing, the classifier is able to predict new instances that have

not been used in the training data. Thus, the performance of

the classifier is tested on a different set of instances.

To demonstrate the effectiveness of the proposed feature

extraction scheme in cognitive function classification, the

SVM, multi-layer perceptron (MLP), K-nearest neighbor

(K-NN) and Naı̈ve Byes classifiers were used. The SVM

used a kernel trick to transform the data points into a higher

dimensional space and then separated them by a hyper-

plane with a maximal margin. The MLP is a neural net-

work-based method, which is commonly used for per-

forming a different variety of detection and estimation

tasks. The K-nearest neighbor works to find a testing

sample’s class by the majority class of the k nearest

training samples. The Naı̈ve Bayes is a simple and efficient

Fig. 2 DWT sub-band

decomposition

Cognitive Task 
Classification

Classifiers 
Performance

W
T 

Fe
at

ur
es

CoefficientsEEG Signals

Discrete Wavelet 
Decomposition

Sub-Bands Relative 
Energy Calculation

Machine Learning (ML) 
Classifiers

ML Classifiers 
Comparison

Fig. 3 Proposed scheme for

feature extraction and

classification of EEG signal
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statistical method, which is based on Bayes’ theorem. For

more details about SVM, MLP, K-NN and Naı̈ve Bayes

(see [1, 2, 35–37].

Experimental results and discussion

In this section, we present the experimental results for

validation, and discuss them. We start with the experi-

mental set-up used for these experiments.

Experimental setup

The classifiers were trained and tested for these extracted

features using the tenfold cross validation method. The

tenfold cross validation method divided the dataset into ten

subsets of equal size and used nine subsets for the classifier

training and one subset for the classifier testing. This process

repeated ten times, each time leaving out one of the subsets

from the training, which was used for testing. This method

has the advantage that it utilized all of the instances in the

dataset for both training and testing. The classifiers’ per-

formances were computed using the most commonly used

parameters, are the accuracy, sensitivity, specificity, preci-

sion, and Kappa statistic [38]. These parameters are defined

as follows.

Accuracy ¼ Total no: of correctly classified instances

Total numbers of instances
� 100

ð10Þ

Sensitivity ¼ True Positive

True Positive þ False Negative
� 100 ð11Þ

Specificity ¼ TrueNegative

TrueNegativeþ False Positive
� 100 ð12Þ

Precision ¼ True Positve

True Positiveþ False Positive
� 100 ð13Þ

KappaðkÞ ¼
Po � PCe
� �

1� PCe
� � ð14Þ

where Po represents the probability of the overall agree-

ment of the label assignments between the classifier and the

true process, and PC
e denotes the chance agreement over the

Fig. 4 Representation of the

A4 and D1–D4 components of

one participant’s EEG signal at

the F3 scalp location during a

cognitive task

Table 1 Frontal F3 channel’s sub-band percentages’ relative energy

and their frequency range

Levels Wavelet

energy (%)

Wavelet

coefficients

Frequency

bands (Hz)

1 0.48 D1 23.5–48

2 8.47 D2 12.25–23.5

3 10.70 D3 6.12–12.25

4 13.63 D4 3.06–6.12

4 70.96 A4 0.53–3.06

D1 detailed coefficient of level 1, D2 detailed coefficient of level 2,

D3 detailed coefficient of level 3, D4 detailed coefficient of level 4,

A4 approximation level 4
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labels—sum of the proportion of instances assigned to a

class multiplies the proportion of true labels of that class in

the dataset.

Classification results

The extracted relative wavelet energy features of D1–D4

and A4 were classified using SVM with RBF kernel, MLP

with five hidden layers, K-NN with k = 1, and Naı̈ve Ba-

yes classifiers for both of the EEG conditions, i.e., eyes

open and cognitive task. This classification process was

implemented for the extracted features from all of the

decomposition levels (D1–D4, and A4). However, the

classification results were not prominent in all of the

decomposition levels. The highest classification perfor-

mance was found in the relative energy of the approxi-

mation coefficients and detailed coefficients of level 4,

which reflected the low frequency (0.53–3.06 Hz) and

above low frequency (3.06–6.12 Hz) dominations in the

cognitive task (see Tables 2 and 3). A representative signal

of 8 s from both the experimental tasks at the F3 electrode

is presented in Fig. 5. The amplitude differences can be

observed in both the 0.5–3 and 3–6 Hz frequency bands of

the two experimental tasks.

The SVM classifier achieved 98.75 % accuracy and the

MLP and K-NN classifiers achieved 98.21 %, accuracy in

the classification using the relative energy of the approxi-

mation A4 coefficients. In the detailed D4 coefficients, the

SVM and MLP achieved 98.21 and 98.57 % accuracy,

respectively, as shown in Tables 2 and 3. The accuracy of

the Naı̈ve Bayes classifier was also found to be above

80 %. The values of the other performance parameters,

such as sensitivity, specificity, precision and Kappa sta-

tistic were prominent. From these results, it seems that the

relative wavelet energy in the low frequency band

(0.53–3.06 Hz) and the above low frequency band

(3.06–6.12 Hz) was a useful feature to classify the EEG

brain patterns in eyes open and the complex cognitive task

(i.e., RAPM).

Discussion

Comparison with existing techniques

A direct comparison of the results with the previous research

in EEG signals was hard due to the variety of EEG datasets,

wavelet types, decomposition levels, participants’ variabil-

ity, and the cognitive tasks used. However, a brief compar-

ison with the previous related studies is presented here. The

information about the dataset, feature extraction methods,

cognitive tasks, machine learning algorithm and the classi-

fication performance reported in previous studies are pre-

sented in Table 4. The list of studies in Table 4 have used the

time domain, frequency domain, autoregressive (AR) coef-

ficient and/or wavelet transform-based features for EEG

classification in a cognitive task as mentioned in ‘‘Related

work’’ section. The majority of the studies have used non-

linear classifiers (e.g., ANN and kernel-based SVM), which

are complex in nature and time consuming to build the

classification model. In the case of using very few instances

in the classification as mentioned in a few studies in Table 4,

it may causes the over fitting problem in classification [39].

In this work, we used 280 instances for each class in the

Table 2 Classification results of the relative wavelet energy of the level 4 approximate coefficients (A4) for the cognitive task

Classifier Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) AUC Kappa statistic

SVM 98.75 100 97.50 97.60 0.98 0.97

MLP 98.21 100 96.40 96.60 0.98 0.96

K-NN 98.21 99.60 96.80 96.90 0.98 0.96

Naı̈ve Bayes 83.57 75.00 92.10 90.50 0.93 0.67

SVM support vector machine, MLP multi-layers perceptron, K-NN k-nearest neighbors, AUC area under the receiver operating characteristic

curve

Table 3 Classification results of the relative wavelet energy of the level 4 detailed coefficients (D4) for the cognitive task

Classifier Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) AUC Kappa statistic

SVM 98.21 99.60 96.80 96.90 0.98 0.96

MLP 98.57 99.60 97.60 97.60 0.98 0.97

K-NN 97.14 98.90 95.40 95.50 0.97 0.94

Naı̈ve Bayes 83.03 84.60 81.40 82.00 0.89 0.66

SVM support vector machine, MLP multi-layers perceptron, K-NN k-nearest neighbors, AUC area under the receiver operating characteristic

curve
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classification. Such a high number of instances in classifi-

cation have not been reported in cognitive task classification

using EEG. Hence, we have used both the linear (e.g.,

K-NN) as well as the non-linear classifiers (e.g., ANN) along

with the 10-cross validation scheme. The benefit of the

10-cross validation process is that all instances in the sample

are used for both training and validation exactly once [39].

Therefore, in the presence of a high number of instances, the

use of multiple classifiers in the present study made it

comparable with previous studies in terms of classification

performance. The classification results of this study in both

linear and non-linear classifiers were found to be better than

related studies which used similar classifiers and the same

nature of the cognitive tasks.

EEG low frequencies with cognitive neuroscience

perspective

The EEG low frequency bands (delta and theta) have been

reported by the cognitive neuroscientists as cognitive

rhythms, and have been linked with cognitive and attention

demanded tasks [43–45]. Especially, the event-related

potential (ERP) studies have reported the most significant

findings of the delta band related to cognitive processing

[44], i.e., the associations of the P300 component with the

cognitive process [46]. This relationship has been widely

reported in the cognitive neuroscience literature. In brief,

the delta band has been considered as the primary

contributor to the P300 component of ERP [47]. Gennady

et al. [48] reviewed the delta band relationship with cog-

nitive processing and have confirmed that delta is linked

with the cognitive process. Similarly, the theta rhythms are

the most intensively studied in the cognitive neuroscience

aimed at correlating the theta rhythms with cognitive

processing [49–51]. Particularly, theta in the frontal

regions is critical for attentional and cognitive processing

in ERP tasks [50]. Most of these studies reported signifi-

cant increase in delta and theta power in the cognitive

tasks. This may be the reason, that we achieved high

classification accuracy in the low frequency bands

(0.53–3.06 and 3.06–6.12 Hz) for discriminating the

RAPM and baseline—eyes open task. Hence, the results of

this study reflect the previous studies’ findings in cognitive

neuroscience research.

Conclusion

This paper has presented the use of relative discrete

wavelet energy along with machine learning algorithms for

the classification and the quantitative analysis of sponta-

neous EEG signals recorded during complex cognitive

task. The EEG signals were split into sub-bands using

DWT with Daubechies (db4) wavelets and the sub-bands’

relative energies were computed for all of the 128 channels

of each subject’s EEG recording. For classification, four

Fig. 5 Representative signal of low frequencies (delta and theta bands) at the F3 electrode position (Red color shows the signal of the cognitive

task, and the blue color represents the signal of the eyes open task)
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different classifiers (SVM, MLP, K-NN and Naı̈ve Bayes)

were employed and their performance was evaluated for

cognitive task discrimination. The classification results of

SVM and MLP demonstrated above 98 % accuracy with

features extracted using A4 (0.53–3.06 Hz) and D4

(3.06–6.12 Hz) sub-bands. The wavelet energy is a useful

feature to classify the EEG signals corresponding to com-

plex cognitive tasks, and it will be helpful for EEG clas-

sification in clinical applications, such as epilepsy,

depression, and stress diagnosis as it is capable of identi-

fying variations in non-stationary EEG signals because of

the localization characteristics of the wavelet transforma-

tion [5]. The low frequencies, especially in the range of the

delta band, are perceived in cognitive neuroscience as the

primary contributor to the cognitive processing. Hence, the

proposed feature scheme has the clinical significance to be

applied on real time EEGs in BCI applications for severe

motor disabled patients to control external devices using

cognitive power. This may be implemented in future work.
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Table 4 Summary of existing feature extraction and classification techniques for EEG in cognitive tasks

Ref Year Subjects

(instances)

EEG scalp

electrodes

Cognitive task Feature Classifier Accuracy

(%)

[20] 2003 4 6 Five tasks as reported by

Keirn and Aunon [22]

Wavelet packet RBF

network

85.30

[40] 2004 4 6 Five tasks as reported by

Keirn and Aunon [22]

DWT ANN 74.40–82.30

[4] 2006 7 6 Five tasks as reported by

Keirn and Aunon [22]

AR coefficients SVM, ANN

and ELM

53.98–56.07

[21] 2007 2 6 Five tasks as reported by

Keirn and Aunon [22]

Wavelet Packet Entropy up to seven

levels

SVM 87.5–93.0

[19] 2007 7 6 Three tasks classified

(baseline, mental letter,

multiplication) from

Keirn and Aunon [22]

Frequency Bands Power and AR

coefficients

SVM with

RBF

kernel

70

[41] 2009 9 9 – Wavelet relative energy ANN 95.2

[42] 2009 7 6 Five tasks as reported by

Keirn and Aunon [22]

Empirical mode decomposition, time

and frequency domain features

ANN and

LDA

87.35–91.17

[6] 2009 4 6 Five tasks (Baseline or

relaxed state,

multiplication, visual

counting, mental letter

composing geometric

object rotation) as

reported by Keirn and

Aunon [22]

DWT with db4 up to level 5 K-NN 81.48–89.58

[24] 2009 3 8 Three cognitive tasks

(imagination of left hand

movement, imagination

of right hand movement,

and generation of words)

Power spectral density feature ANN and

SVM

65.90–68.35

[8] 2011 7 6 Five tasks as reported by

Keirn and Aunon [22]

Immune feature SVM 85.4–97.5

[27] 2014 (120) 9 Raven’s progressive metric Frequency Band power ANN 88.89

This

work

2014 8(560) 128 Baseline (eyes open),

RAPM

Wavelet relative energy SVM

MLP

K-NN

Naı̈ve Bayes

98.75

98.57

98.21

83.57

SVM support vector machine, MLP multi-layers perceptron, K-NN k-nearest neighbors, AUC area under the receiver operating characteristic

curve, AR autoregressive, RBF radial basis function, ANN artificial neural network, LDA linear discriminant analysis, DWT Discrete wavelet

transform, RAPM Raven’s advance progressive metric, db4 Daubechies wavelet order 4, 9 unknown. The values in brackets ‘()’ indicate number

of instances and values without bracket or outside bracket denote number of subjects only in the 3rd column from side of the above table
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