
ASH1: a Stack-Based Input/ Output Processor for

USB Operations
Abdullah Al-Dujaili#1, Lo Hai Hiung #2, Shawn Tan *3

#Universiti Teknologi PETRONAS

Perak, Malaysia
1
ash.aldujaili@gmail.com

2
lo_haihiung@petronas.com.my

*Aeste Works (M) Sdn Bhd

 Kuala Lumpur, Malaysia
3
shawn.tan@aeste.my

Abstract— This paper describes a work in progress: ASH1, an 8-

bit input/ output processor (IOP) that is designed to be able to

perform USB operations. It has a stack-based architecture where

most of the operations are done on the top elements of the stack.

The instruction set consists of 17 14-bit instructions optimized

for framing and driving software code. ASH1 communicates with

the main processing unit (Master CPU) through a wishbone bus.

It has been proven reliably at 50 MHz in an Altera Cyclone II

FPGA device. With around 1400 FPGA slices and a maximum

clock frequency of 90 MHz, ASH1 could make a good substitute

for big USB IP Cores. Future work includes making ASH1 MAC

Ethernet capable and USB2 compatible.

Keywords— input/ output processor, usb, stack, wishbone bus.

I. INTRODUCTION

The input/ output subsystem is an essential

component of any computer system nowadays, as

shown in Fig 1. It provides the necessary means of

communication between the central processing unit

and the external environment. It supplies the

computer with the capability of receiving

information from an outside resource, delivering

them to the user in an appropriate form and vice

versa via input/ output (I/O) devices (peripherals)

[1].

Fig. 1 A typical computer system

I/O devices vary in data rate and this might cause

a bottlenecking effect due to the vast gap between

the very fast CPU and the relatively slow I/O

devices. Therefore, different modes of data transfer

have been developed since the early history of

computers to deal with that problem. In some

modes, the CPU acts as an intermediate unit to

control the transfer of data, whereas in other modes

the transfer takes place directly between the

peripheral and the memory unit that include polling,

interrupt, direct memory access (DMA) and input/

output processor (IOP).

An IOP is a processor (controller) dedicated to

I/O operations and it does not need to be configured

entirely by the master CPU. Moreover, it can fetch

its own instructions and communicate with the

peripherals.

II. PROBLEM STATEMENT

General-purpose processors (GPPs) have one

profound problem that is the imbalance between the

I/O and processing capabilities. Complicated

operations can be performed by such processors

faster than loading or storing results. Therefore,

plenty of these processors’ tasks are I/O bounded

which result in a performance bottleneck and

inefficiency [2].

Such drawback can be alleviated by adding up an

I/O controller (IP cores) that will relieve the master

CPU from I/O tasks. However, the architecture area

should be considered. For instance, AEMB

processor core consumes about 1500 FPGA slices

while a USB 1.1 IP core takes up about 2700 FPGA

slices [3]. If we want to make AEMB USB-capable,

we need to add up a controller that is almost double

the size pf the AEMB processor core [4] and this is

where ASH1 comes to address and settle this

problem by implementing the I/O operations

virtually in software with a minimum hardware

support.

III. THE ASH1 IOP

A. Architecture

ASH1 is a special-purpose processor designed for

I/O operations (currently, it can carry out USB 1.1

operations). It is implemented using a stack-based

architecture in which most of the operations can be

carried out on the top of the stack (TOS).

A block diagram of ASH1 is shown in Fig 2 in

the next page. It consists of an 8-bit data stack of 8

elements, a control unit, a 11-bit program counter,

an arithmetic/ logic unit (ALU), a cyclic

redundancy checksum (CRC) unit, an 8-bit input

port, two 8-bit output ports, a wishbone bus

interface unit, a register file of 16 8-bit registers

which can be used as a configuration registers for

ASH1 and master CPU to use as well as a

temporary storage, two 2048 bytes FIFO buffers to

store incoming and outgoing data payload, and

three 8-bit flag registers. These components are

interconnected among each other via two buses; an

8-bit data bus (dbus) and an 11-bit address bus

(abus) [5].

Fig. 2 ASH1 Architecture

B. ASH1 Data Stack

Data stack represents the main axis upon which

ASH1 operates. The stack-based architecture was

chosen because of the fact that it is a reduced-

operand set architecture which makes the processor

as well as its instruction set simpler in design and

smaller in size [6]. Procedure calls can be

implemented efficiently, as the working parameters

are always on the stack, thus reducing subroutines

overhead [7].

ASH1 data stack consists of 8 elements of 8-bit

wide each. ALU instructions can access the top 4

elements. I/O instructions access the TOS. In case

of a USB packet transmission, the LSB of the TOS

is sent over the output port with the Non-return to

Zero, Inverted (NRZI) differential encoding. In the

case of a USB packet reception, the MSB of the

TOS is loaded with the incoming bit.

C. Communication Protocol

For any I/O operations, the software involved can

be subdivided into three levels:

1) High-level (Application) Software, which makes use

of the data being exchanged for various purposes.

2) Medium-level (Framing) Software, which is

responsible for creating the frames/ packet with which the I/O

protocols conform.

3) Low-level (Interface Driving) Software, which is

responsible for driving and communicating with the interface

units (PHYs) that link up the I/O devices (Peripherals).

As an IOP, ASH1 is designed to execute the

framing and interface driving software. The high-

level software is the task of the main processing

unit (master CPU) with which ASH1 would co-

exist. Therefore, they should be able to exchange

data and communicate with each other. This

achieved via the wishbone bus [8] and a set of

interrupt signals. The wishbone datasheet for ASH1

is shown in table 1.

TABLE I

WISHBONE DATASHEET FOR ASH1

WISHBONE DATASHEET for ASH1

Description Specification

General Description 8-bit slave input and output port

Supported Cycles Slave READ/WRITE

Data Port Size 8-bit

Data Port Granularity 8-bit

Data Port, Max Operand

Size
8-bit

Data Transfer Ordering N/A

Data Transfer Sequencing Undefined

Signal Name
WISHBONE

Equivalent

clk CLK_I

reset RST_I

strb_wb STB_I

we_wb WE_I

ack_wb ACK_0

data_i_wb DAT_I()

data_o_wb DATA_O()

addr_wb ADR_I

Three entities act as a message centre between

ASH1 and the master CPU that are:

1) Tx FIFO: The data in this buffer is written by the

master CPU only and read by ASH1 only.

2) Rx FIFO: The data in this buffer is written by ASH1

only and read by the master CPU only.

3) Register File: whose memory cells can be accessed

(read/ write) by both ASH1 and the master CPU.

Tx and Rx FIFO buffers require no protocol as

the data integrity is safeguarded (read or write is

only from one party). However, the register file

needs a specific protocol agreed between ASH1 and

the master CPU, for instance, ASH1 can read all the

registers but write to a specific ones only and the

same goes with the master CPU.

D. Instruction Set

ASH1’s seventeen instructions are 14-bit wide.

All instructions take one cycle except one

instruction (CRC). There are nine categories of

instructions: literal, call, conditional jump, jump,

ALU, memory access, I/O, CRC and bit

manipulation.

Literals are 8-bit. All target addresses for call,

conditional jump and jump are relative 8-bit wide

addresses with an additional sign bit which allows

to jump within ±255 address locations around the

call, conditional jump or jump instruction.

ALU instructions can access the top 4 elements

of the data stack on which it can perform AND, OR,

XOR, shift to the right, increment and decrement

operations.

Memory access instructions include fetching/

storing from/into the register file as well as storing

into the Rx FIFO and fetching from the Tx FIFO.

I/O instructions deal with the top of the stack to

drive two output ports and one input port with the

suitable encoding that can be Non-return to Zero,

Level (NRZL), NRZI or NRZI differential encoding.

Aside from the I/O instructions that can be used

to encode outgoing USB packets and decode

incoming USB packets, CRC instructions can be

used to generate and check USB CRC-5 and CRC-

16 fields.

Bit manipulation instructions are used to set/ reset

flags useful for ASH1 operation and for generating

interrupt signals to the master CPU. This category

also helps in dealing with single bit input signals

that might be used to detect an error state or a

specific condition.

E. USB-Specific Operations

As it was mentioned before, ASH1 is built to

execute framing and interface driving software

codes. Therefore its instructions were optimized to

meet this objective. At this point of time, ASH1

instructions have been design to accommodate for

USB operations and as the following:

1) USB Protocol: This includes, for example,

acknowledgement procedure, error detection

procedure, bit stuffing / destuffing,

retransmission time, time between packets and

specifying the appropriate packet to send. All

these rules can be implemented in software with

the jump, conditional jump and ALU instruction

categories.

2) USB Packets Composing/ Decomposing: The

master CPU provides ASH1 with the necessary

data components like target address, data

payload through the wishbone bus. Other packet

fields are built up by ASH1like SYNC and CRC

field through the use of literal, CRC, ALU and

memory access instruction categories.

3) USB Packets Transmission and Reception:

ASH1 I/O ports are hardware-equipped with

NRZI differential encoding/ decoding used for

USB packets over the physical line. However it

is the programmer’s responsibility to identify

the start and end of a packet through the use of

I/O, ALU, bit manipulation, call, jump and

conditional jump instruction categories.

F. Size and Performance

ASH1 has been FPGA proven on Cyclone II,

EP2C35F672C6 device using Altera DE2 board

with the maximum clock frequency present on-

board (50 MHz). It consumes 1400 FPGA slices

and has a maximum running frequency of 90 MHz.

Table 2 summarizes ASH1’s architecture speed

and area versus various USB IP Cores [3], [9], [10].

Fig. 3 is a normalized scatter plot comparing their

performances. In terms of resource utilization, it’s

apparent that ASH1 utilizes the least. In terms of

operating frequency, ASH1 functions at a relatively

high frequency. Despite this high frequency, ASH1

is currently able to perform low speed USB and

probably full speed USB as well. USB 1.1 has a

data rate of 1.5 Mbit/s for low speed and 12 Mbits/s

for full speed [11], thus with a maximum clock

frequency of 90 MHz, ASH1 can have up to 60

instructions for low speed and up to 7 instruction

for full speed to manipulate a single bit for its

transmission or reception which is considered

considerably flexible especially for the low speed

data rate. However for USB 2.0 and USB 3.0 data

rates, ASH1 has to be running on a much higher

frequency than the current one.

TABLE II

ASH1 ARCHITECTURE AREA AND SPEED ON DIFFERENT FPGA FAMILIES

VERSUS SOME USB IP CORES

FPGA

Family

ASH1

Area

(Slices)

ASH1

Speed

(MHz)

IP

Core

IP

Core’s

Area

(Slices)

IP

Core’s

Speed

(MHz)

Cyclone

II
1281 90

USB

1.1
2617 48

Cyclone

III
1306 115.5

USB

OTG
4471 105

Stratix

III
784 123

USB

2.0
1889 60

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.25 0.5 0.75 1 1.25

Architecture Speed

A
rc

h
it

e
ct

u
re

 A
re

a

ASH1

USB 1.1 IP Core

USB OTG IP Core

USB 2.0 IP Core

Fig. 3 Normalized scatter plot ASH1 and various IP cores architecture area

and speed.

IV. FUTURE WORK

ASH1 is still under development to include other

I/O operations. Some points to be considered for

our future work: including MAC Ethernet

operations, achieving higher clock rate thereby

being able to perform USB 2.0 and USB 3.0

operations, and developing an assembler for ASH1

instruction set.

More details about ASH1 development can be

found at Aeste Works (M) Sdn Bhd website/ code

blog: http://www.aeste.my/

V. CONCLUSION

With its rich instruction set, size and speed,

ASH1 makes a good substitute for most of the

present communication controllers (IP cores) whose

considerable size is a major drawback. The only

requirement needed with ASH1 is a profound

knowledge of the I/O protocol being used along

with excellent programming techniques that would

make ASH1 run efficiently.

ASH1 is currently able to perform USB 1.1

operations and future work is planned to make it

MAC Ethernet capable and USB2 compatible.

REFERENCES

[1] D. Nasib S. Gill and J.B Dixit, Digital Design and Computer

Organisation. Firewall Media, 2008.

[2] Bob Walsh, TEK Microsystems. FPGAs Edge Out GPPs for Advanced

Signal Processing Apps. Retrieved October 21, 2011, from COTS

Journal Web site:

http://www.cotsjournalonline.com/articles/print_article/100527
[3] 1.1 Host and Function IP core :: Overview. (2010, February 22).

Retrieved June 25, 2011, from OpenCores Web Site:

http://opencores.org/project,usbhostslave
[4] Aeste Works (M) Sdn Bhd. (n.d.). aemb | AESTE. Retrieved December

5, 2011, from AESTE | engineering elegance:

http://www.aeste.my/tags/aemb
[5] Nakano, K. and Ito, Y. “Processor, Assembler, and Compiler Design

Education Using an FPGA,” 2008. Parallel and Distributed Systems,
2008. ICPADS '08. 14th IEEE International Conference on. pp. 723-

728.

[6] A. Burutarchanai, P. Nanthanavoot, C. Aporntewan, and P.
Chongstitvatana, “A stack-based processor for resource efficient

embedded systems,” Proc. of IEEE TENCON 2004, Thailand, 21-24

November 2004.

[7] Koopman, Philip J. Stack Computers: the new wave: Mountain View

Press, 1989.

[8] Wishbone :: OpenCores. Retrieved October 21, 2011, from OpenCores

Web site: http://opencores.org/opencores,wishbone

[9] CAST, Inc. (n.d.). USBHS-OTG-SD. Retrieved December 5, 2011,

from Semiconductor IP Cores and Electronic Platform IP from CAST,
Inc.: http://www.cast-inc.com/ip-cores/interfaces/usbhs-otg-

sd/index.html

[10] HiTech Global, LLC. (n.d.). USB 2.0 Device IP Core. Retrieved
December 5, 2011, from IP cores, FPGA Evaluation boards and desing

services: http://www.hitechglobal.com/IPCores/usbdevice.htm

[11] Compaq, Intel, Microsoft,NEC. Universal Serial Bus Specification.
Revision 1.1. s.l. : Compaq Computer Corporation,Intel Corporation,

Microsoft Corporation, NEC Corporation, 23 September 1998.

