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Abstract. Geological structures commonly exhibit anisotropic behavior which 

needs to be considered in seismic imaging not only to avoid distortions in imag-

ing, but also to provide valuable information about lithology and fracture net-

works. Effects of seismic anisotropy in imaging can be studied by employing an 

anisotropic wave equation. Forward modeling of waves is a fundamental com-

ponent in both migration and inversion algorithms to study the physics of wave 

propagation. In this study, we present the role of Thomsen parameters for elas-

tic wave propagation in vertical transverse isotropy (VTI) using weak anisotro-

py approximation. Wavefield modeling revealed the influence of anisotropy pa-

rameter δ in controlling anisotropic features. Moreover, both phase velocity 

and group velocity are studied which can be employed for ray tracing. 
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1 Introduction 

Hydrocarbon and geothermal reservoirs, and overlying strata are often composed of 

anisotropic rocks. Considering anisotropy into account is necessary not only to avoid 

distortions in imaging, but also provides valuable information about lithology and 

fracture networks. To account for the effects of seismic anisotropy in imaging, an 

anisotropic wave equation must be employed. Forward modeling of waves is a fun-

damental component in both migration and inversion algorithms to study the physics  

of wave propagation and to test hypotheses inferred from observational data [1]. Since 

there is no general analytic solution to the anisotropic elastic wave equation, various 

approximate approaches are employed. These are often based on physically-motivated 

arguments specific to the problem under study [2, 3].  

Most of publications on seismic anisotropy present the effect of velocity variation 

with angle on the amplitudes and traveltimes of seismic waves [2, 4-6]. Backus [4], 

using averaging, illustrated that fine layering causes elastic anisotropy. Subsequently, 
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transverse isotropy was parameterized using the ‘Thomsen’ parameters for weak elas-

tic anisotropy. The weak anisotropy approximation is an extremely powerful tool in 

understanding the behavior of seismic wavefields in anisotropic media [7]. Weak 

anisotropy approximation provides simpler equations compared to strong anisotropy. 

These equations indicate that anisotropy parameter δ controls most anisotropic phe-

nomena of importance in exploration geophysics, some of which are non-negligible 

even when the anisotropy is weak [2]. Perturbation theory is another technique which 

applied to study attributes of elastic waves propagating in weakly anisotropic media. 

The approximated formula demonstrates that all studied attributes rely on elements of 

a matrix linearly dependent on parameters of a medium [3]. 

Since petroleum geophysicists are particularly interested in layered sedimentary 

rocks, the analysis of events at a planar horizontal interface between two media is 

given special attention. The principal objective of this research is to provide an ap-

proach offering a better understanding of physics of anisotropic media as observed 

through elastic waves. We present the role of Thomsen parameters for elastic wave 

propagation in vertical transverse isotropy (VTI) using weak anisotropy approxima-

tion. In this study, both phase velocity and group velocity are studied which can be 

employed for ray tracing [8].     

2 Theory  

When the wave velocity propagation depends on the angle between the wave vector 

and the vertical anisotropy symmetry axis, the medium is called VTI. Since most of 

rocks have anisotropy in the weak to moderate range (anisotropy parameters < 0.2), 

one can use the approximation of weak anisotropy and applying Taylor series to ob-

tain a set of equations for phase and group velocities [2]. In order to obtain the P and 

SV wave velocities which depend on the phase angle θ, the phase velocity for weak 

anisotropy VTI is given by: 
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where α� and β� are the vertical velocity for P- and S-waves, phase angle θ is the 

angle between the wavefront normal and the vertical axis, and Thomsen parameters ε, 
δ and γ are defined by:  
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C56	is elastic modulus tensor which characterizes the elasticity of the medium. 

Group velocity, which is computed in ray direction (∅), is a key element in driving 

anisotropy ray-tracing equations. The exact scalar magnitude 9: of the group velocity 

is given in terms of the phase velocity magnitude v [9] by: 

 

9: = �<1 + �=� >?>@	�                                              (7) 

 

 Replacing (1) in (7) is given the quasi P-wave group velocity in terms of its phase 

velocity for the case of weak anisotropy, is as follows: 
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The relationship between group angle ∅ and phase angle � for P, G9 and GH is, in 

the linear approximation, 

IJ�∅� = IJ���K1 + 2� + 4�� − �	 sin� ��P                         (9) 

 

IJ�∅�� = IJ���� �1 + 2 ��� �� �� − �	�1 − 2 sin� ���	$               (10) 

 

IJ�∅�% = IJ���%�1 + 2&	                                      (11) 

 

These equations, 1- 3 and 7-11, define the group velocity, at any angle, for each 

wave type. 

3 Numerical Modeling and Examples  

The theory, described in the previous section, is implemented in MATLAB. To solve 

the equations, some MATLAB's build-in functions are applied to calculate and plot 

the results. Elliptical anisotropy is given by the equality ε = δ. Fig. 1 shows the com-

parison of wavefields, for phase and group velocities, in a VTI and an isotropic medi-

um. Since ε = δ, the wavefield for anisotropic P-wave is elliptical, however the S-

wave wavefield for both media is spherical which can be directly realized from (2). 

Also, no difference can be seen between phase and group velocity in this condition. 
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a.                                                                          b. 

      

Fig. 1. Comparison of wave propagation in a VTI medium specified by ε = 0.15, δ = 0.15	and 

γ = 0.2, and an isotropy medium. (a) Phase velocity modeling, and (b) group velocity model-

ing. 

In next example, to study the effect of parameter δ,  we change the parameter δ, 

and keep ε and γ fixed. It can clearly be seen that parameter δ along with parameter ε 
control the propagation of P- and SV-wave in VTI medium (Fig. 2). However, the 

equation (1) indicates that, for near-vertical P-wave propagation, the δ contribution 

entirely dominates the ε contribution [2]. 

 

 a.                                                                   b. 

   

Fig. 2. Wave propagation in a VTI medium for different δ = −0.15	and	δ = 0.2 (ε = 0.15	and 

γ = 0.2). (a) Phase velocity modeling, and (b) group velocity modeling. 

Parameter γ is another anisotropy parameter, influencing elastic wave propagation, 

which is studied in this step. To achieve our goal, we keep ε	and	δ unchanged in both 
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plotting, and only parameter γ is altered. As it is illustrated in Fig. 3., there is no dif-

ference in wavefields of both figures and wavefields are overlapped each other. 

Hence, γ does not affect the propagation of P- and SV-waves, and it only corresponds 

to the conventional meaning of SW anisotropy (equation 3) [2]. For small value of γ, 

phase velocity and group velocity of SW almost propagate similarly, although increas-

ing γ causes the distinct wavefields of SW. 

 

 

a.                                                                     b. 

    
 

                                 c. 

 
 

Fig. 3.  Wavefield snapshots for different parameters γ = 0.1 and γ = 0.4 (ε = 0.15, δ =
−0.1). (a) Phase velocity modelling of P-wave and Sv-wave, (b) group velocity modelling of P-

wave and Sv-wave, and (c) group and phase velocity wavefields of SW-wave. 
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4 Conclusions 

I presented an elastic wave equation for VTI media with the weak anisotropy approx-

imation. Solving exact elastic anisotropy equations are certainly more expensive in 

terms of computing time and memory requirement. A simplification of the phase-

velocity and group-velocity formula under the assumption of weak anisotropy allows 

one to express clearly the propagation of wave in anisotropy media. This yields a 

straightforward method for calculating phase and group velocity. Equation (1) shows 

that, for weakly anisotropic media, the anisotropy parameter δ, for near-vertical P-

wave propagation, completely dominates the ε contribution. Because of this, δ (rather 

than ε) controls the anisotropic features of most situations in exploration geophysics. 

Nevertheless, the parameter & does not influence the P- and SV-wave wavefronts 

since it does not appear in their wave equations. In addition, SW wave propagation is 

only affected by parameter &. Another achievement of this study is the ability to com-

pute P and S wave velocities as functions of the ray direction which is demanding for 

the implementation of ray-tracing in anisotropic media. 
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