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ABSTRACT

Study presents a novel algorithm to improve the frequency bandwidth of the seismic data
through removal of nen-stationary wavelet in cepstrum domain. Algorithm incorperates useful
properties of both homomorphice deconvolution and spectral decomposition by this way it estimates
and filters the wavelet at each translation of spectral decomposing (Gaussian window which improve
the resolution and tolerates the non-stationary properties of seismic wavelet. This study describes
the comprehensive mathematical formulation of the algorithm and its testing on 1D, 2D synthetic
and real seismic section to confirm its applicability. Comparative testing shows that the algorithm
effectively removed the smearing effect of wavelet which led to broader frequency spectrum and
improved seismic resolution,
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INTRODUCTION

Seismic data is considered to be a convolution of the non-stationary wavelet with the
sub-surface geology. Seismic wavelet changes its shape and frequency component continuously.
Rather than the Fourier transform, Spectral decomposition contains both time and
frequency information at the same instant and it 1s susceptible to local geology
(Partyka et al., 1999). Its spectral decomposing window can be of different shapes and size.
Short-Time-Fourier-Transform (STFT) with Gaussian analysis window is known as Gabor
transform {(Gabor, 19486),

Cepstrum 1is defined as Inverse Fourier transform of the log of the magnitude of Fourier
transform. It 1s mostly used in speech analysis and echo elimination (Oppenheim et al., 1968;
Oppenheim, 1965). In seismic, it 18 being used for homomorphic deconvelution (Ulryeh, 1971;
Stoffa et al., 1974; Buhl et al., 1974; Tribolet et al., 1977) and for caleulation of thin bed thickness
with better accuracy (Hall, 2008; Liu ef al., 2008),

We developed a new algorithm which we named as Cepstrum-Wavelet-Filtering (CWF) which
estimate and filter out the non-stationary wavelet at each translation of the spectral decomposing
window in the cepstrum domain by this way it removes the stationary wavelet limitation of the
homomorphic deconvolution algorithm by incorporation of spectral decomposition algorithm in it.
It is simple, fast and perfectly reconstructs the seismic trace back from the cepstrum domain
through preservation the phase information in its workflow.
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MATERIALS AND METHODS

As Short-Time-Fourier-Transform (STE'T) implement the Fourier transform on each windowed
version of the signal (Eq. 1) (Allen and Rabiner, 1977; Auger and Flandrin, 1995), so application
of natural logarithm on each translation Fourier coefficient provides the logarithm of the
magnitude of Fourier coefficients as a real part whereas the imaginary part contains the phase
spectrum of the given translation as described in Kq. 2. Inverse Fourier transform of the real part
provides the real cepstrum (Kq. 3) which is being used to recover the reflectivity by filtering out the
wavelet whereas the phase spectrum of each translation is preserved for later perfect reconstruction
of signal from the cepstrum domain as deseribed in Eq. 4.

P(nlh)= [ (x(Dxh(1- e (1)

In(F(x,f, h)):In(\/(SR(F(t, £ ) + (1 (F( L)) )+itan_‘ {('(F(’“fh)))} (2)

(R(F(r.f, hy)

C= RD‘HM[J( R(F(x.£.h))) +(1 (F(x.L.h))) J} eimdt} (3)
CR(t)= _[1 {exp {sn [zc . e‘iZﬂﬂJ +i tan™ [M}Hx y(t— D™ dfdt (4)

Wgwexp[[nT_bT] (5)

where, t 18 Time, f 1s frequency, x (t) 1s time domain signal, h {t) is decomposing window, T 1s
window translation along time axis, C is real cepstrongram, v (t) is spectral reconstructiol window,
n is total number of sample in trace, b is current location of window and w is half width of gaussian
window,

Craussian window (Fq. 5) flanks are used to smoothly filter out the initial quefrencies from each
translation (1) of real cepstrogram. Figure 1 shows a graphical illustration of Gaussian filtering
operation on 1D synthetic thin bed model (Fig. 1b), created by convolution of Ricker wavelet
f,,, = 8BHz) with reflectivity series (Fig. la), in a simplified form without using STFT in the
algorithm. Synthetic synthetic trace comprises a set of & thin beds models for the following

conditions:

*  Single event wavelet (f, , =35 Hz and Tuning thickness = 12 msec)

+ Two events are in between 0 to flat spot thickness (i.e., 3 samples or 6 msec thickness)

+  Two events are below flat spot thickness (i.e., 4 samples or 8 msec thickness)

* Two events are at Flat spot thickness (i.e., 5 samples or 10 msec thickness) (Ricker's Criterion)
{(Ricker, 1953)
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Fig. 1{a-g): (a) Thin bed reflectivity madel, (b} Synthetic seismie trace created by convolution with
= 3b Hz, (¢) Real cepstrum of the synthetic trace, (d) Phase
spectrum of the trace, (e) Initial quefrencies are zeroed out by point wise multiplication
of the smooth negative of Gaussian window flank, {f) Real cepstrum after filtering and
(g) Improved resolution after the application of the CWF algorithm (reconstructed
black trace) as compared to original (red curve)

Ricker wavelet {

dom

* Tuning thickness (i.e., 6 samples or 12 msec thickness) (Rayliegh’s Criterion) (Kallweit and
Wood, 1982)

+  Greater than Tuning thickness (i.e., 7 samples or 14 msec thickness)

Figure lc and d shows the real cepstrum and phase spectrum respectively whereas Fig. le
shows the application of Gaussian filtering operation on real cepstrum by point wise multiplication
of negative of the Gaussian window flanks with the initial quefrencies of the real cepstrum which
smoothly reduces its values whereas Fig. 1f shows real cepstrum after filtering. Figure 1g shows
the comparison of original synthetic trace (red curve) with CWEF algorithm reconstructed trace

which shows improved resolution.

APPLICATION

Application on thin bed model: Figure 2 shows the CWF algorithm implementation on synthetic
thin bed model which 1s ereated by using the above mention parameters. Figure 2b shows its real
cepstrogram whereas Fig. 2¢ shows the Gaussian filtering window for each translation of
cepstrogram which is used to reduce initial quefrencies. Figure 2d and e shows the filtered real
cepstrogram and its reconstructed seismic trace respectively. By comparison of the original synthetic
trace (Fig. 2a) with CWF reconstructed trace, it can be observe that the resclution of events 1s

effectively improved.
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Fig. 2(a-e): (a) Original synthetic thin bed model, (b) Real cepstrogram, obtained by calculation of
real cepstrum at each time step of spectrogram, (c) Gaussian filtering window for each
time step of cepstrogram, (d) Filtered cepstrogram after implementation of the
(Gaussian window filtering and (e) Reconstructed synthetic trace from filtered

cepstrogram which shows improved resoclution

Application on synthetic wedge model: The 2D synthetic model is created from the geclogical
model of the stratigraphic layer of known thickness and elastic properties. In the synthetic seismic
(Fig. 3a), trace interval is 2 m, sample rate is 2 msec, the wedge layer velocity is 2700 m sec™ and
Ricker wavelet with the predominant frequency of 35 Hz:

0.012

sec,b__ . =16.2m)

(tuning thickness b, =12msecorb

space space

=2700 2«
secC

is used.
As CWEF algorithm filter cut the wavelet at each translation (1) without being the influence of

user predefined spectral broadening window (Yilmaz, 2008) so the low frequencies of the synthetic
seismic section remains whereas the higher frequencies become apparent because of the removal
of the wavelet interference effect as can be observed in Fig. 3a. In comparison of improvement in
seismic resolution, it can be observed that resolution of the wedge model 1s effectively improved
after the application of CWF as can be observe through Fig. 3b and ¢. An event which started to
merge at trace No. 22 is separable till trace No. 22 which shows a 10 m increase in resolution as

highlighted by colour lines.

Application on real seismic data: Seismic data from Malay Basin are usually of high quality
with good signal to noise ratio. Figure 4a shows the real seismic section which contains number of
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Fig. 3(a-c): (a) Amplitude spectrum of synthetic wedge model with almost same trend but with
higher wvalues, (b) Original synthetic wedge model with S/N ratio of 3 and trace
interval of 2 m and (¢) Improved resolution, events which started to merge at trace
No. 22 still separable till trace No. 30 (8 m improve in resolution)
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Fig. 4(a-b): (a) Real seismic section contains a number of hidden features and (b) Improved seismic
resolution and number of hidden features are recovered after the application of CWF
algorithm, some are marked with arrow signs
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Fig. B(a-b):; (a) Real seismic from Malay Basin show gas seepage and (b) CWF algorithm improved
resolution of seismic section without being much adversely affected by low frequency

zones

hidden features due to the interference effect of the seismic wavelet. Figure 4b shows the same
seismie section after the application of propose algorithm, it can be observe that the CWFE algorithm
extracted a number of hidden features as some of them are marked with arrow sign and effectively
improved the seismic resclution. In another example shown in Fig. b, shows the application of CWF
algorithm on seismic section containing gas clouds. As gas clouds produce large high frequency
attenuation which leads to shadowing effect to underlying layers. Figure 5a and b show the
original seismic and seismic after the proposed CWF' algorithm. It can be easily observed that the
proposed algorithm has considerably improved the resclution of seismic without being much
adversely affected by gas cloud in original data.

CONCLUSION

New proposed Cepstrum-Wavelet-Filtering (CWF) algorithm increase the robustness of
homomorphic deconvolution by introduction of Short-Time-Fourier-Transform (STFT) in its
algorithm. This incorporation leads to estimate and filter the seismic wavelet, at each translation of
spectral decomposing Gaussian window which improve the resolution of seismic data.

This improvement in seismic resolution which leads to better thickness estimation, correlation
to well logs and thereby improves the stratigraphic interpretation. These results are achieved
without being constrained by well log information and starting model, which leads to unbiased data
driven better resolution. As evident from its testing on 1D, 2D synthetic and on real seismic section,
the proposed algorithm has potential use in seismic interpretive data processing.
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