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Abstract A prime target of seismic data processing is to

improve the signal-to-noise ratio of the seismic data. New

signal processing tools such as Wavelet transform, Radon

transform, Fan-beam transform, Ridgelet transform and

Curvelet transform have proven their results in image pro-

cessing. A comparative study has been performed with these

techniques to test their ability to increase the signal-to-noise

ratio of seismic data by removing random noises. We then

described the comprehensive mathematical formulation of

these algorithms and tested them on both synthetic seismic

data, which was created with a known signal-to-noise ratio

with desired geologic features, and real seismic data, which

contained curved features with random noise. Wavelet

transform, which extends the robustness of frequency-

dependent filtering by adding time dimension and multi-

scale wavelet translation, improves the signal-to noise-ratio

through the threshold coefficient filtering of random noise.

The Radon transform and Fan-beam transform provide the

opportunity of angle-dependent filtering, but produce

adverse effects on curved features of seismic data and

decrease seismic resolution. Ridgelet and Curvelet trans-

form are more robust than Radon and Fan-beam transform.

But Ridgelet transform, which uses Radon transform in its

coefficient calculation, also produces adverse effects on

curved features and threshold filtering leads to a decrease in

the signal-to-noise ratio. The results have shown that the

Curvelet transform is robust enough to handle random noise

and also preserve the inclined and curved features of seismic

data. However, its coefficient calculation requires large

computation time and memory space.

Keywords Seismic processing � Signal-to-noise ratio �
Signal processing � Seismic resolution � Noise attenuation

Introduction

Fourier analysis is a well-known tool to decompose a signal

into its orthogonal components of Sine and Cosine waves

(Eq. 1). It transforms the signal from the time domain to the

frequency domain. The amplitude and phase spectrum

obtained through the Fourier analysis is the solution of a

stationary signal. But, the seismic wavelet is non-stationary

and changes its shape and frequency contents as it propa-

gates in subsurface. Short Time Fourier Transform (STFT)

is the windowed version of Fourier transform (Eq. 2)

(Donoho 1995; Jacobsen and Lyons 2003, 2004). It tries to

accommodate the deficiency of the Fourier transform, but

the selection of the type and size of the window has its own

limitations. A large window size gives more frequency

resolution but less time resolution as the product of time-

resolution and frequency-resolution is constant. It is not

possible to have both high time resolution and frequency

resolution at the same instant. The selection of the size of

the window is a trade between either high frequency reso-

lution or time resolution. This phenomenon is known as the

Gabor–Heisenberg Uncertainty Principle.

Fðf Þ ¼
Z1

�1

xðtÞe�j2pft dt ð1Þ
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Fðs; f : hÞ ¼
Z1

�1

xðtÞh�ðt � sÞe�j2pft dt ð2Þ

where x(t) is the time domain signal, f the frequency, t the

time, h*(t), the decompostion window, and s is the trans-

lation of window along time axis.

The Wavelet transform provides one of the solutions

using the finite duration wavelets with a variable length

which defines its central frequency. Both of these tech-

niques (i.e., Short Time Fourier Transform and Wavelet

transform) come in the category of spectral decomposition

and work on one trace at a time. The rest of the other

techniques discussed in the paper are at least two dimen-

sional. Radon and Fan-beam transforms provide the

opportunity of the angle-dependent removal of noise from

seismic data. The Radon transform computes projections of

a two-dimensional image matrix on a straight or curved

line. This projection on the line is calculated for 0�-180�.

Whereas in Fan-beam, this projection can be on a straight

or curved line. The projection for each direction is calcu-

lated by taking the line integral of the straight lines

emerging from a single vertex. This vertex must reside

outside of a two-dimensional image matrix. The last two

techniques are Ridgelet and Curvelet transform. The

Ridgelet transform is obtained by taking the Radon trans-

form of a 2D Fourier transform seismic section. It extends

the capability of the Radon transform for the removal of

noise from the seismic data through the reconstruction of

the filtered coefficients of Ridgelet. Curvelet coefficients

are calculated through the application of the Ridgelet

transform on each scaled (2D Wavelet transform) version

of the seismic data.

Methodology

Signal processing techniques are tested on both synthetic

and real seismic data. Testing includes two levels. In the

first level, an algorithm has to reconstruct all the seismic

features (i.e., linear, inclined and curved features without

any distortion) without preconditioning the input data.

After the first-level filtering, the qualified algorithm is

tested for its improvement of the signal-to-noise ratio using

coefficient filtering.

These algorithms have been tested on synthetic and real

seismic data. To make the procedure simple, the synthetic

seismic data were created using a convolution technique on

a thin-bed reflectivity model. This reflectivity model con-

tained both horizontal and inclined layers. Random noise

with a signal-to-noise ratio of 3 was added to the reflec-

tivity model before the convolution operation. Figure 1

shows the synthetic seismic data used in the algorithm

testing. Whereas, the curved feature was tested on real

seismic data as shown in Fig. 2.

Wavelet transform

The Wavelet transform can be calculated using Eq. (3). In

this analysis, the Dabachi wavelet 6 was used which sat-

isfied the admissibility condition (Eq. 4). Input 2D syn-

thetic seismic data were decomposed into 4 levels. The first

level decomposed the seismic data into detailed (high

frequency) and approximation (low frequency) seismic

sections. In the second level, the approximation was

decomposed into its details and approximation; it was

similarly performed for the 3rd and 4th level as shown in

Fig. 3a (Mallat 1989; Torrence and Compo 1998).

Xwða; bÞ ¼
1ffiffiffi
b
p

Z1

�1

xðtÞw� t � a

b

� �
dt;

a�ð�1;1Þ
b�ð0;1Þ

�
ð3Þ

where, x(t), is the time domain signal, a, the location

parameter of wavelet translation, b, the wavelet scaling

parameter, and w*(t) is the complex conjugate of the

mother wavelet w(t)

Stretching of the mother wavelet gave a long duration

with a low central frequency; whereas, compression led to

a short analysis wavelet with a high central frequency.

Cw ¼
Z1

0

jWðf Þj2

jf j df \1 ð4Þ

Wðf Þ is the Fourier transform of the wavelet w(t). Since Cw

has to be finite, the integral defining Cw should be inte-

grable at f = 0. This implies that Wð0Þ ¼ 0: This means

that the average value of the wavelet should be zero i.e.R�1
1 wðtÞ dt ¼ 0

This decomposition provided the opportunity to filter

the noise at a desired level and the seismic data were

able to be reconstructed back from its filtered coefficients.

Fig. 1 Synthetic seismic data with a signal-to-noise ratio of 3
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The simple idea of the threshold of the Wavelet coeffi-

cients was used in this analysis. Figure 3b–d show the

input synthetic seismic data, denoised seismic data after

the application of DWT and the residual data,

respectively. It can be observed that the seismic data

reconstructed from the filtered coefficients of the Wavelet

transform had a better signal-to-noise ratio but the

residual contained energy of the signal, which can cause

Fig. 2 Real seismic section contained curved features and random noise

Fig. 3 Application of the Wavelet transform on a 2D Synthetic seismic
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seismic resolution problems. Figure 4 shows the real

seismic data reconstructed after the threshold filtering of

the Wavelet transformed coefficients. In comparison with

the original seismic section shown in Fig. 1, the signal-

to-noise ratio was improved after the Wavelet transform

coefficient filtering, and three features, i.e. horizontal,

inclined (Fig. 3) and curved (Fig. 4) were recovered.

Radon transform

The Radon transform computed the projections of an

image matrix along the specified directions. A projection

of the two dimensional function f(x, y) was a set of line

integrals as shown in Fig. 5. Radon transform computed

the line integral of parallel beams for different angle

ranges from 0� to 180� with respect to the center of the

image (Eq. 5) (Lim and Jae 1990; Bracewell and Ronald

1995). The result of the 2D image was a 2D matrix

where each column represented the angle of the beam,

the rows represented the distance from the center of the

image.

Rf ðh; tÞ ¼
Z

f ðx1; x2Þdðx1coshþ x2sinh� tÞ dx1 dx2 ð5Þ

where, d, is the Dirac distribution, h, the angle (0�-180�),

and t is the translation.

The Radon transform provided the opportunity of the

angle-dependent removal of the noise from the seismic

data. Figure 6a shows the seismic section with noise. The

Radon transform was calculated with the angle range from

0� to 180� with an interval of 1�. In the Radon domain, the

angle ranges from 0� to 20� and 155� to 180� were filtered.

Figure 6b shows the filtered section and Fig. 6c shows the

seismic section with an improved S/N ratio.

As the Radon transform is a two dimensional operation

and uses line integrals at each angle of rotation, the

reconstruction of the curved feature becomes challenging

and produces noise. Figure 7 shows the real seismic data

reconstructed back from the Radon domain without any

filtering. In comparison with the original seismic data, the

signal-to-noise ratio was decreased and the curved fea-

tures were adversely affected by the transformation

process.

Fig. 4 Real seismic data after the threshold filtering of the Wavelet transform coefficients

Fig. 5 Radon transform projected the 2D image matrix on a straight

line through the line integration of the parallel straight line for each

angle of rotation
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Fan-beam transform

Fan-beam used a special X-ray procedure. In its coefficient

calculation, the angle of the projection ranged from 0� to

360� (Kak and Slaney 1988), from the center of the image

(2D seismic) rather than 0� to 180� for the Radon transform

discussed above. This projection can be on a straight or

curved line (Matlab 2013). So, Fan-beam provided more

flexibility of the angle-dependent filtering than the Radon

transform. In this analysis, the Fan-beam coefficients were

calculated by projecting on a straight line. The seismic data

were reconstructed back after the filtering of the angle

Fig. 6 Application of the Radon transform on the synthetic seismic section

Fig. 7 Curved features of seismic data were not properly reconstructed back from the Radon domain and the signal-to-noise ratio was decreased

J Petrol Explor Prod Technol (2014) 4:87–96 91

123



range of 0�-25�, 155�-205�, 335�-360� as shown in

Fig. 8. This angle-dependent filtering improved the signal-

to-noise ratio of the linear and inclined features of the

seismic data; whereas, testing on the real seismic section

(Fig. 9) shows that the curved feature of the seismic data

was adversely affected by the transformation process. This

led to a decrease in the signal-to-noise ratio and false

seismic features.

Fig. 8 Application of Fan-beam transform on the real seismic section

Fig. 9 Curved features of the seismic data were badly effected by the Fan-beam transform
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Ridgelet transform

The Ridgelet transform is good for identification of line

discontinuities in seismic data and it can handle edge

effects better than the Wavelet transform

Rf ðh; tÞ ¼
Z

f ðx1; x2Þdðx1coshþ x2sinh� tÞ dx1dx2

Rf ða; b; hÞ ¼
Z

Rf ðh; tÞ:a�1
2w

t � b

a

� �
dt

ð6Þ

where, d, is the Dirac distribution, t, the translation, h, the

angle (0�-180�), Rf(h, t), the Radon transform, Rf(a, b, h),

the Ridgelet transform, w, the wavelet, a, the wavelet scale

factor, b, the wavelet translation factor.

Ridgelet coefficients can be obtained by taking the

Wavelet transform of the Radon transformed seismic

data (Eq. 6) (Do and Vetterli 2003; Jean-Luc et al.

2002). Figure 10a shows the input seismic section along

with the wavelet used for its decomposition. Figure 10b–

d show the reconstructed seismic section from the fil-

tered Ridgelet coefficients, residual section and recon-

structed seismic section after the application of the

wiener filter, respectively. The analysis shows that the

Ridgelet transform had an adverse effect on the inclined

features as observed in Fig. 10c (where the residual

section contained the energy of inclined features ). The

wiener filter (which is a low pass-filter) was applied to

filtered seismic section to remove the effect of jagged-

ness. It used the pixel-wise adaptive wiener method

based on the statistics (mean & standard deviation)

estimated from a location’s neighborhood. In this study,

the neighborhood was defined by the window. The

Ridgelet threshold coefficient filtering produced noise in

the seismic section which led to a decrease in the signal-

to-noise ratio as shown in Fig. 11.

Curvelet transform

The Curvelet transform is a powerful tool to improve the

signal-to-noise ratio of seismic data. The Curvelet

transform used the 2D Wavelet transform before the

implementation of the Ridgelet transform on each scaled

version of the seismic section (Do and Vetterli 2003).

Figure 12 shows the application of the Wrapping Curv-

elet transform on the noisy data. Figure 12a shows the

synthetic seismic data with no noise; whereas 12b shows

the same synthetic seismic data with the addition of

normally distributed noise with an S/N ratio of 3. The

Curvelet transform of the synthetic seismic data was

calculated and the synthetic data were reconstructed with

the 0.008 % Curvelet coefficients shown in Fig. 12c.

Fig. 10 Application of the Ridgelet transform on the synthetic seismic data

J Petrol Explor Prod Technol (2014) 4:87–96 93

123



It can be observed that random noise was considerably

removed from the synthetic seismic section. The Curv-

elet threshold coefficient filtering effectively removed the

random noise from the seismic section without much

effect to the curved features of the seismic section, as

shown in Fig. 13.

Results and discussion

A comparative study between new signal processing

techniques has been performed to improve the signal-to-

noise ratio of seismic data. The Fourier transform is a

powerful tool to transform the signal from the time

Fig. 11 Ridgelet transform reconstructed the curved feature of the seismic section but the threshold coefficient filtering decreased the signal-to-

noise ratio

Fig. 12 Application of the wrapping Curvelet transform on the synthetic seismic data
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domain to the frequency domain, but it has a lack of

time localization of the seismic event in the Fourier

domain. So, in non-stationary seismic signals, the Fourier

transform is not the solution. The Short-Time-Fourier-

Transform, STFT, has extended the capability of the

Fourier transform by adding the time dimension. This

has helped to filter the desire frequency at a known time;

but, STFT decomposition depends upon the size and

shape of the spectral decomposing window. One of the

solutions to this uncertainty principle is a Wavelet

transform. But the Wavelet transform cannot handle edge

effects when the seismic data are reconstructed back

from its filtered coefficients because the edges in the

seismic data are repeated scale after scale. So, filtering

though the Wavelet transform can cause resolution

problems in seismic data. The Radon transform and Fan-

beam transform provide the opportunity of angle-

dependent filtering using a technique of projection of a

beam on line. These techniques have been found to be

good at improving the signal-to-noise ratio, but have

adverse effects on curved features of seismic data. Sec-

ondly, both of the techniques use interpolation for the

reconstruction from their coefficients which causes res-

olution problems in seismic data. The Ridgelet transform,

which uses the Radon transform in calculation of Ridg-

elet coefficients, solves the problem of edges in the

seismic data but produces adverse effects on the inclined

features and curved features when seismic data are

reconstructed back from their filter coefficients. The

Curvelet transform (uses the 2D Wavelet transform

before the application of the Ridgelet transform on each

scaled version of the seismic data) is more robust to

handle inclined and curved features. It handles the hor-

izontal, inclined and curved features of seismic data

more effectively when a seismic section is reconstructed

back from its filter coefficients. But this technique

requires a long processing time and memory. So, a faster

and more memory efficient algorithm is needed to be

developed so that it can be implemented on a large

seismic volume.
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