



Abstract— An application can be crippled by the memory

leakage of one of its components. Unfortunately, access to the

source code of a referenced component, for rectification, is

often not feasible. This paper presents our experience of using

multi-processing as a strategy to contain the problem. We

demonstrate the use of Java ProcessBuilder to protect

applications from unstable native code accessed via the Java

Native Interface. The technique discussed can help in designing

applications that provide better fault tolerance without costing

much memory utilization.

Index Terms— Computer crashes, Java Virtual Machine,

multi-processing, multi-threading.

I. INTRODUCTION

Some applications have tasks that refer to native code.

Native code can be found in, for example, Dynamic-Link

Library (DLL) files. Native code is often written in a

language such as C or C++. Since native code is specifically

written for the host platform the performance is

unquestionably superior to that of an application written in a

portable language such as Java. Invoking native code extends

some host-specific features and avoids unnecessary

reinvention of functions that are already available [1].

Unfortunately, invoking native code has some

disadvantages that may cripple the parent application.

Therefore, it is imperative to implement fault-tolerance in an

application having a native code invocation. This paper

describes our experience of using Java ProcessBuilder to

protect Java applications from errors caused by native code.

The following sections discuss the architecture of the Java

Virtual Machine (JVM), stability issues of the Java Native

Interface (JNI), memory leaks, multiprocessing and

multithreading designs, the experimental setup and finally,

the advantages and disadvantages of the technique that we

propose to address the problem.

II. JAVA VIRTUAL MACHINE (JVM)

 A Java application runs on JVM, a stack-based machine

that emulates a virtual processor and provides a layer of

abstraction on which Java byte code runs. JVM provides

platform portability and manages the native method stack.

JVM throws an OutOfMemoryError exception when a

Manuscript received September 16th, 2011(Write the date on which you

submitted your paper for review.)

Yew Kwang Hooi is with Dept. of Computer and Information Sciences,

Uni. Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak,

Malaysia (yewkwanghooi@petronas.com.my).

Alan Oxley is with Dept. of Computer and Information Sciences, Uni.

Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak,

Malaysia (alanoxley@petronas.com.my).

Java program is consuming more memory than is available.

To address a large memory requirement, the memory size of

JVM can be enlarged from the default 2MB capacity, at

loading time. To address an unexpected increase at runtime,

hedge memory can be pre-reserved and programmatically

released when the exception is thrown [2]. However, this

technique requires an overestimation of memory usage and

this may be a waste of resource.

During execution, a runtime instance of Java application

code is generated as a process with the main method being

the initial running thread. A thread may execute one or more

tasks in a sequential or concurrent manner. Another process,

a new sub-process or a new thread may be created and added

as necessary. A new sub-process requires the allocation of

resources (CPU time, memory, files, I/O devices) over and

above that of the parent process. In Java, an operating system

process can be created using ProcessBuilder. Alternatively, a

new thread may be spawned to run a new task. Use of new

threads, i.e. multi-threading, is sometimes preferred because

resources are being shared, resulting in better data exchange

and faster context switching [3].

III. NATIVE CODE INVOCATION

Java Native Interface (JNI) wraps native code so that the

latter can be used like a Java object [4]. As depicted in Fig. 1,

the functionalities of a native stack are not directly accessed

but accessed through the Java method stack that functions as

a mediator. However, there are several disadvantages of

invoking native code from a Java application [5]. These

disadvantages will now be described

Fig. 1. Multi-threaded invocation of native method stacks.

A. Poor stability

Careless usage of JNI may cause the application to

perform poorly leading to instability [6].

B. Reduced portability

 JNI reduces application portability because the native code

JNI Fault Tolerance Using Java ProcessBuilder

Yew Kwang Hooi, Alan Oxley

is not portable and may not be available on another host [6];

C. Lacking garbage collection mechanism

 JNI and most native code do not have a garbage collection

mechanism for automatic recycling of unused dynamically

allocated memory;

D. Lacking exception controls

 JNI does not catch and control exceptions or errors

generated by the native code. An undetected memory leak

may grow in size and ultimately cripple any application.

Hence, JNI may disrupt application stability.

IV. MEMORY LEAKS

A process that is causing a memory leak may produce a

saw tooth pattern of memory utilization [7]. Left unattended,

the memory leak may eventually cripple the application. The

host system usually finds itself incapable of handling the

silent memory leak. Following are reasons for the occurrence

of a memory leak [8]:

A. Data cancer

Due to negligence in cleaning up unused Java references.

B. Incomplete disposal of unused memory

Due to negligence in disposing of unused memory.

C. Bad finalizer

Wrong implementation of the finalizer causes many pending

objects to be left.

When a shortage of memory occurs, as a recovery measure

the host system may randomly, or selectively, remove

processes in order to free up some of the memory. Selective

removal assumes that the largest process is responsible for

the leak, whether or not it is the actual cause of the leak.

A preventive measure, unlike recovery, does not clean-up

after a process has failed but, rather, prevents failure in the

first place. A good mechanism for preventing memory leaks

involves hosts pre-allocating a memory limit to each process

in order to restrict dynamic memory usage to a single block

of memory during application initialization [9].

V. PROCESSES AND THREADS

Processes and threads are the basic units of execution. A

process is an active entity spawned from a program during

runtime, whose instructions are being executed sequentially

in the CPU until completion [3]. It has a self-contained

execution environment, i.e. a private set of basic run-time

resources and memory space. Processes are generally not

allowed to access one another's storage despite sharing

underlying computational resources (CPUs, memory, I/O

channels). “A machine crash caused by one process often

kills all other processes” and brings the program to an

immature termination [10].

An application must have at least one or more cooperating

processes. Cooperating processes communicate through

Inter-Process Communication (IPC), i.e. pipes and sockets.

Reasons for providing an environment that allows process

cooperation are as follows:

• Information sharing of the same piece of information.

• Computation speedup by breaking a task to several

subtasks.

• Modularity by dividing system functions into separate

processes or threads.

• To allow multiple task processing.

Java applications contain only a single process at startup.

Depending on its design, the main process may create several

sub-processes during its runtime, see Fig. 2. For example, a

new process can be forked using a ProcessBuilder object.

The path of the new process, i.e. an external byte code to be

executed, can be passed as an argument to the ProcessBuilder

object during its instantiation.

Fig. 2. Multi-processing.

When a sub-process is created, resources (CPU time,

memory, files, I/O devices) are allocated from the operating

system or the parent process. Each process or sub-process

may contain one or more jobs. Each job is a code segment

(algorithm) plus data. Some of the jobs residing in the same

process must be performed sequentially whilst some are best

done concurrently.

Multi-threading is the use of two or more threads within a

process, see Fig. 3. It is a common technique to hide latency

by switching execution from one thread to another in order to

let the CPU perform useful work while waiting for the

pending requests to be processed in the main memory. A new

thread requires fewer resources to create than a new

sub-process and provides better context switching [3].

Threads belonging to the same process share a code section, a

data section and operating system resources such as memory

and files. Sharing of resources facilitates data exchange and

enhances performance. However, multithreading requires a

few tradeoffs:

• Sharing of resources eliminates total autonomy. Memory

pool has to be shared among threads.

• Unsynchronized threads may be potentially problematic

due to subtle and non-deterministic interactions. Cheap

scheduling policies lead to thread competition and

possible starvation. Hence, reliability of a multithreaded

program can only be determined partially.

• Memory-based synchronization prevents thread

starvation but incurs programming complexity and

greater chances of a programming error [10].

Fig. 3. Multi-threading.

VI. BENCHMARKING MEMORY

 Benchmarking is a way of providing consistency among

evaluations for comparison purposes. Kazi [11] states that

the lack of a standardized set of Java benchmark programs

makes it difficult to evaluate the performance of various

execution techniques. Java benchmarks such as

CaffeineMark 3.0 (an ‘instructions per second’ benchmark),

Jmark (a ‘multi-threading performance’ benchmark),

Volanomark (a ‘messages transferred per second’ benchmark)

and Symantec are designed to test specific features of a JVM

implementation, not the performance of a JVM as a whole.

Static checkers such as Calvin, developed by Flanagan et al.

[12], is a tool to catch elusive timing-dependent bugs in

multi-threading systems, including synchronization error and

violation of data invariants.

 Despite the tools, none seemed to fit our benchmarking

requirements. Hence, we devised our own measurement

using a Java System class static method, the NetBeans

Profiler and the Windows Task Manager performance

indicator.

VII. METHODOLOGY

Our work entailed conducting a series of experiments. A

Java desktop application was written and tested on a host

computer. The computer has a single processor, an Intel

Core 2 Duo 2.99 GHz, and has1.93 GB RAM of primary

memory. The JVM is Java 2 Platform Standard Edition

version 1.5.0 JVM and the operating system is Windows XP

v2002 SP3.

The application contains two tasks. The first task contains

a native DLL file referenced via a JNI wrapper. In this task,

the DLL file is used to access a Universal Serial Bus device,

retrieve a string value and pass it to the main method. The

second task uses standard Java Swing packages to create,

assemble and display Graphical User Interface (GUI)

containers, widgets, events, handlers and images.

The following tests were conducted independently:

a. Run both tasks sequentially in the main method.

b. Run both tasks concurrently using multi-threading.

c. Run both tasks concurrently using multi-processing, with

the first task running in a forked process implemented by

ProcessBuilder, see Fig. 4.

Fig. 4. ProcessBuilder for multiprocessing in Java.

 Both tasks involve consuming a considerable amount of

memory and having an extensive loading time. For each of

the above tests, both loading time and runtime stability were

assessed.

To measure the first aspect, i.e. loading time, time stamps

were inserted at strategic points in the code; see Fig. 5 and

Fig. 6. An elapsed time was determined by finding the

difference in the time stamps. To evaluate the second aspect,

i.e. stability, the application was left running for 12 hours or

until a crash occurred.

Fig. 5. Measuring elapsed time in sequential tasks.

Fig. 6. Measuring elapsed time in concurrent tasks.

VIII. RESULTS AND DISCUSSION

A. Application performance and stability.

The tests were carefully repeated several times and the

findings are summarized in Table I. Running task 1 and task

2 individually served as control experiments.

TABLE I: SUMMARY OF FINDINGS

Implementation
Mean loading

time
Crash

Running

time

Task 1 only 3.6 sec Yes 10 mins

Task 2 only 0.8 sec No > 12 hours

Sequential >4 sec Yes <4 mins

Multi-threading 3.2 sec Yes <1 mins

Multi-processing 3.3 sec No >12 hours

In the sequential implementation, the findings indicate

that the application is slow, unstable and crash-prone. To

verify which of the two tasks was responsible for the crash,

we ran them separately. The result indicates the task using

the JNI method to be the cause. It violated access of a

problematic code frame. Inspection of its profile indicates a

possible memory leak, see Fig. 7. A saw tooth memory

utilization pattern is a common indicator of a memory leak.

Fig. 8 depicts the pattern of normal heap memory

consumption, which was observed in the other task, i.e.

instantiation and loading of GUIs.

Fig. 7. Saw tooth utilization of heap memory in task 1.

Fig. 8. Normal heap memory performance in task 2.

 However, a saw tooth pattern can also be the result of an

active garbage collection [7]. Further inspection indicates the

absence of the garbage collection activity in task 1; see plot

for “Relative Time Spent in GC” in Fig. 9. This confirms that

the saw tooth pattern is not caused by garbage collection but

by a possible memory leak. Consequently, the surviving

generations of objects, indicated by the “Surviving

Generations” plot, are increasing and may eventually

consume all of the allocated memory. Garbage collection in

task 2, as indicated by the short curve on the X axis in Fig. 10,

ensures that the number of surviving generations of objects is

kept at a constant.

Fig. 9. Surviving objects without garbage collection.

Fig. 10. Surviving objects with garbage collection.

Unfortunately, accessing native code for the rectification

of a memory leak is not always possible. Therefore, we

investigated the possible use of multi-threading or

multi-processing in order to isolate the problematic task from

the healthy one.

Using multi-threading, the loading time is reduced by 28%

but an unexpected result is that the program becomes even

more prone to crashing, as evidenced by a shorter running

time. Memory consumption within JVM revealed a relatively

sluggish garbage collection and high memory consumption.

Using multi-processing produces a significant

improvement. When a new process is started, a new

application state is initialized by copying values from the

current application, including standard streams and ‘running

user’ [13]. We have successfully shown that

multi-processing is capable of isolating unstable native code

by having separate memory stacks in a new process; see Fig.

11. Should the native code crash in its own native memory

stack, it will not propagate into the Java method stack

memory. The limitation however, is that since separate

processes do not share memory blocks, communication

between tasks is not direct but through message passing

using input/output streams. Hence, this may not be feasible

for achieving a high performance if both tasks need to

communicate very frequently or to share large amounts of

data.

Fig. 11. Proposed multi-processing using Java

ProcessBuilder.

B. Effect on the physical memory of the host

In multithreading, the used heap keeps growing in size

until it reaches 10MB, see Fig. 12. In multiprocessing,

however, the size of the used heap remains below 10MB, at

about 8MB; see Fig. 13.

Fig. 12. Multithreading of both task 1 and task 2.

Fig. 13. Multiprocessing of both task 1 and task 2.

Although multi-processing does not seem to require more

heap memory than multi-threading, there is a possibility that

more memory has been allocated outside of the JVM for

running the native code. The profiling utility used does not

give information on host memory consumption. Thus, a

system tool such as Windows Task Manager was used to

inspect the amount of physical memory consumed before and

after running the experiments.

The results in Table II indicate that the use of

ProcessBuilder does not incur more physical memory than

multi-threading. Surprisingly, the amount of memory utilized

when running the tasks concurrently is not much different

from running the task individually. This is probably due to

the small memory footprint of the JNI task, making the

difference not significant. Furthermore, usage of the Task

Manager may be prone to inaccuracy due to there being many

other background programs running and so it is not able to

exclusively measure the application.

TABLE II: PHYSICAL MEMORY CONSUMPTION ON HOST

No. Scenario
% memory

consumed

1 GUI only 3.59%

2 JNI only 2.13%

3 Sequential 3.75%

4 Multithreading 3.69%

5 Multiprocessing 3.57%

The results were obtained from tests conducted on

Windows XP SP2. Results from tests conducted on Windows

Vista and Windows 7 have, however, been deliberately

omitted. This is because the application tested on both

platforms did not crash immediately, although similar

patterns of memory consumption and loading behaviors were

observed. As the intent of this paper is to show that

ProcessBuilder is a good strategy to prevent instability

leading to a crash, we chose to display test results from the

least stable platform.

 These findings are useful because sometimes an

application may need to access a native library function on

the host computer and this activity might be unstable,

causing memory leakage and thus bringing down the

application. As with ‘exceptions throwing’, the errors caused

by a referenced library should be managed so that if

necessary the application can either rollback the process to a

previous state or gracefully shut itself down.

 Multi-processing requires the operating system of the host

computer to allocate resources that are separate from the bulk

of the application, which is beneficial to the application

because any memory leakage or other problem is then

isolated from the main part of the application. In Java, this

can be done using the ProcessBuilder class which can be

easily coded using Threads and Runnables. Any library file,

not necessarily wrapped in JNI, can be run as a task. The

drawback is the lack of communication between concurrent

tasks in separate processes, which is important to

applications with plenty of message passing, synchronization

and coordination.

IX. CONCLUSION

Our experience shows that failing native code can be

tolerated in a Java application if the task can be isolated as a

separate sub-process. A carefully written Java program may

not be immune from buggy native code unless rectification

has been undertaken on the native source code. We introduce

a more convenient solution, the use of Java ProcessBuilder to

isolate unstable native code.

ACKNOWLEDGMENT

The authors would like to thank the management of

Universiti Teknologi PETRONAS for all forms of support.

REFERENCES

[1] S. Liang. Role of the JNI in The Java Native Interface. Prentice Hall,

1999. Available:

http://java.sun.com/docs/books/jni/html/intro.html#1811

[2] J. T. Boyland, "Handling Out of Memory Errors," presented at the

Proceedings of ECOOP'05 Workshop on Exception Handling in

Object-Oriented Systems : Developing Systems that Handle

Exceptions, Glasgow, 2005.

[3] Silberschatz, Galvin, Gagne "Operating System Concepts with Java,

6th edition." San Francisco, CA: John Wiley and Sons, 2004, p. 144.

[4] B. Venners, Inside the Java 2 Virtual Machine, 2nd ed. Columbus,

OH: Computing McGraw-Hill, 1999.

[5] (2010, 9th January). Java Native Interface. Available: http://

en.wikipedia.org/wiki/Java_Native _Interface #cite_note-role-0
 [6] M. Dawson, G. Johnson, A. Low (2009, July 7, 2010). Best practices

for using the Java Native Interface. Available:
http://www.ibm.com/developerworks/java/library/j-jni/

 [7] (2011, April 2nd). Memory Leak. Available:
http://en.wikipedia.org/wiki/Memory_leak

[8] (November 29, 2010). Java Memory Leak. Available:
http://jb2works.com/memoryleak /index.html

[9] N. Hillary, Measuring Performance for Real-Time Systems. Denver,
Colorado: Freescale Semiconductor, 2005.

[10] Lea D., "Concurrent Programming in Java: Design Principles and
Patterns" Cambridge, MA: Addison-Wesley, 1996, p. 23.

[11] Kazi I.H., Chen H.H., Stanley B., Lilja D.J., Techniques for obtaining

high performance in Java programs. ACM Comput. Surv. 32, (2000),

pp. 213-240.

[12] Flanagan C., Freund S.N., Qadeer S., Seshia, S.A.: Modular

verification of multithreaded programs. Theor. Comput. Sci. vol. 338,

(2005), pp. 153-183.

 [13] D. Balfanz and L. Gong, "Experience with Secure Multi-Processing

in Java," presented at the Proceedings of the The 18th International

Conference on Distributed Computing Systems, 1998.

Yew Kwang Hooi graduated in 2006 with a MEng in

Computer Science from Cornell University, New

York. In his earlier years, he had worked at IBM

Malaysia as a product engineer and had worked on

projects at the Federal Bank and for a Malaysian

banking portal. He led a software tool development for

electrical safety review for Group Technology

Services, Petroleum Nasional Berhad for 2 years. He

has conducted a few programming workshops for the

local state government. At present, he is a lecturer in

the Information and Communication Technology programme at Faculty of

Science and Technology, Universiti Teknologi PETRONAS, Malaysia. His

research interest includes software engineering, computer graphics and data

mining. He is a certified programmer for Java platform, SE6. This author is a

member of IEEE Computer Society and ACM Member.

Alan Oxley is a professor at Universiti Teknologi

PETRONAS in Perak, Malaysia. He has received the

following degrees from UK universities: a B.Sc. from

City University, London; an M.Sc. from Cranfield

Institute of Technology; a Ph.D. from Lancaster

University; a PGCTLHE from London Guildhall

University. His research interests are wide-ranging.

He is currently looking into a fundamental problem in

bioinformatics.

