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Abstract— An application can be crippled by the memory 

leakage of one of its components. Unfortunately, access to the 

source code of a referenced component, for rectification, is 

often not feasible. This paper presents our experience of using 

multi-processing as a strategy to contain the problem. We 

demonstrate the use of Java ProcessBuilder to protect 

applications from unstable native code accessed via the Java 

Native Interface. The technique discussed can help in designing 

applications that provide better fault tolerance without costing 

much memory utilization. 

 
Index Terms— Computer crashes, Java Virtual Machine, 

multi-processing, multi-threading.  

 

I. INTRODUCTION 

Some applications have tasks that refer to native code. 

Native code can be found in, for example, Dynamic-Link 

Library (DLL) files. Native code is often written in a 

language such as C or C++. Since native code is specifically 

written for the host platform the performance is 

unquestionably superior to that of an application written in a 

portable language such as Java. Invoking native code extends 

some host-specific features and avoids unnecessary 

reinvention of functions that are already available [1]. 

Unfortunately, invoking native code has some 

disadvantages that may cripple the parent application. 

Therefore, it is imperative to implement fault-tolerance in an 

application having a native code invocation. This paper 

describes our experience of using Java ProcessBuilder to 

protect Java applications from errors caused by native code. 

The following sections discuss the architecture of the Java 

Virtual Machine (JVM), stability issues of the Java Native 

Interface (JNI), memory leaks, multiprocessing and 

multithreading designs, the experimental setup and finally, 

the advantages and disadvantages of the technique that we 

propose to address the problem. 

 

II. JAVA VIRTUAL MACHINE (JVM) 

 A Java application runs on JVM, a stack-based machine 

that emulates a virtual processor and provides a layer of 

abstraction on which Java byte code runs. JVM provides 

platform portability and manages the native method stack. 

JVM throws an OutOfMemoryError exception when a 
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Java program is consuming more memory than is available. 

To address a large memory requirement, the memory size of 

JVM can be enlarged from the default 2MB capacity, at 

loading time. To address an unexpected increase at runtime, 

hedge memory can be pre-reserved and programmatically 

released when the exception is thrown [2]. However, this 

technique requires an overestimation of memory usage and 

this may be a waste of resource. 

 

 

During execution, a runtime instance of Java application 

code is generated as a process with the main method being 

the initial running thread. A thread may execute one or more 

tasks in a sequential or concurrent manner. Another process, 

a new sub-process or a new thread may be created and added 

as necessary. A new sub-process requires the allocation of 

resources (CPU time, memory, files, I/O devices) over and 

above that of the parent process. In Java, an operating system 

process can be created using ProcessBuilder. Alternatively, a 

new thread may be spawned to run a new task. Use of new 

threads, i.e. multi-threading, is sometimes preferred because 

resources are being shared, resulting in better data exchange 

and faster context switching [3]. 

 

III. NATIVE CODE INVOCATION 

Java Native Interface (JNI) wraps native code so that the 

latter can be used like a Java object [4]. As depicted in Fig. 1, 

the functionalities of a native stack are not directly accessed 

but accessed through the Java method stack that functions as 

a mediator. However, there are several disadvantages of 

invoking native code from a Java application [5].  These 

disadvantages will now be described  

 

 
Fig. 1. Multi-threaded invocation of native method stacks. 

 

A. Poor stability 

Careless usage of JNI may cause the application to 

perform poorly leading to instability [6]. 

B. Reduced portability 

 JNI reduces application portability because the native code 
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is not portable and may not be available on another host [6]; 

C. Lacking garbage collection mechanism 

 JNI and most native code do not have a garbage collection 

mechanism for automatic recycling of unused dynamically 

allocated memory; 

D. Lacking exception controls 

 JNI does not catch and control exceptions or errors 

generated by the native code. An undetected memory leak 

may grow in size and ultimately cripple any application. 

Hence, JNI may disrupt application stability. 

 

IV. MEMORY LEAKS 

A process that is causing a memory leak may produce a 

saw tooth pattern of memory utilization [7]. Left unattended, 

the memory leak may eventually cripple the application. The 

host system usually finds itself incapable of handling the 

silent memory leak. Following are reasons for the occurrence 

of a memory leak [8]: 

A. Data cancer 

Due to negligence in cleaning up unused Java references. 

B. Incomplete disposal of unused memory 

Due to negligence in disposing of unused memory. 

C. Bad finalizer 

Wrong implementation of the finalizer causes many pending 

objects to be left. 

 

When a shortage of memory occurs, as a recovery measure 

the host system may randomly, or selectively, remove 

processes in order to free up some of the memory. Selective 

removal assumes that the largest process is responsible for 

the leak, whether or not it is the actual cause of the leak.  

A preventive measure, unlike recovery, does not clean-up 

after a process has failed but, rather, prevents failure in the 

first place. A good mechanism for preventing memory leaks 

involves hosts pre-allocating a memory limit to each process 

in order to restrict dynamic memory usage to a single block 

of memory during application initialization [9]. 

 

V. PROCESSES AND THREADS 

Processes and threads are the basic units of execution. A 

process is an active entity spawned from a program during 

runtime, whose instructions are being executed sequentially 

in the CPU until completion [3]. It has a self-contained 

execution environment, i.e. a private set of basic run-time 

resources and memory space. Processes are generally not 

allowed to access one another's storage despite sharing 

underlying computational resources (CPUs, memory, I/O 

channels). “A machine crash caused by one process often 

kills all other processes” and brings the program to an 

immature termination [10]. 

An application must have at least one or more cooperating 

processes. Cooperating processes communicate through 

Inter-Process Communication (IPC), i.e. pipes and sockets. 

Reasons for providing an environment that allows process 

cooperation are as follows: 

• Information sharing of the same piece of information. 

• Computation speedup by breaking a task to several 

subtasks. 

• Modularity by dividing system functions into separate 

processes or threads. 

• To allow multiple task processing. 

 

Java applications contain only a single process at startup. 

Depending on its design, the main process may create several 

sub-processes during its runtime, see Fig. 2. For example, a 

new process can be forked using a ProcessBuilder object. 

The path of the new process, i.e. an external byte code to be 

executed, can be passed as an argument to the ProcessBuilder 

object during its instantiation. 

 

 
Fig. 2. Multi-processing. 

 

When a sub-process is created, resources (CPU time, 

memory, files, I/O devices) are allocated from the operating 

system or the parent process. Each process or sub-process 

may contain one or more jobs. Each job is a code segment 

(algorithm) plus data. Some of the jobs residing in the same 

process must be performed sequentially whilst some are best 

done concurrently.  

Multi-threading is the use of two or more threads within a 

process, see Fig. 3. It is a common technique to hide latency 

by switching execution from one thread to another in order to 

let the CPU perform useful work while waiting for the 

pending requests to be processed in the main memory. A new 

thread requires fewer resources to create than a new 

sub-process and provides better context switching [3]. 

Threads belonging to the same process share a code section, a 

data section and operating system resources such as memory 

and files. Sharing of resources facilitates data exchange and 

enhances performance. However, multithreading requires a 

few tradeoffs: 

• Sharing of resources eliminates total autonomy. Memory 

pool has to be shared among threads. 

• Unsynchronized threads may be potentially problematic 

due to subtle and non-deterministic interactions. Cheap 

scheduling policies lead to thread competition and 

possible starvation. Hence, reliability of a multithreaded 

program can only be determined partially. 

• Memory-based synchronization prevents thread 

starvation but incurs programming complexity and 

greater chances of a programming error [10]. 

 

 



  

Fig. 3. Multi-threading. 

 

VI. BENCHMARKING MEMORY 

 Benchmarking is a way of providing consistency among 

evaluations for comparison purposes. Kazi [11] states that 

the lack of a standardized set of Java benchmark programs 

makes it difficult to evaluate the performance of various 

execution techniques. Java benchmarks such as 

CaffeineMark 3.0 (an ‘instructions per second’ benchmark), 

Jmark (a ‘multi-threading performance’ benchmark), 

Volanomark (a ‘messages transferred per second’ benchmark) 

and Symantec are designed to test specific features of a JVM 

implementation, not the performance of a JVM as a whole. 

Static checkers such as Calvin, developed by Flanagan et al. 

[12], is a tool to catch elusive timing-dependent bugs in 

multi-threading systems, including synchronization error and 

violation of data invariants. 

 Despite the tools, none seemed to fit our benchmarking 

requirements. Hence, we devised our own measurement 

using a Java System class static method, the NetBeans 

Profiler and the Windows Task Manager performance 

indicator. 

 

VII. METHODOLOGY 

Our work entailed conducting a series of experiments. A 

Java desktop application was written and tested on a host 

computer.  The computer has a single processor, an Intel 

Core 2 Duo 2.99 GHz, and has1.93 GB RAM of primary 

memory. The JVM is Java 2 Platform Standard Edition 

version 1.5.0 JVM and the operating system is Windows XP 

v2002 SP3.  

The application contains two tasks. The first task contains 

a native DLL file referenced via a JNI wrapper. In this task, 

the DLL file is used to access a Universal Serial Bus device, 

retrieve a string value and pass it to the main method. The 

second task uses standard Java Swing packages to create, 

assemble and display Graphical User Interface (GUI) 

containers, widgets, events, handlers and images. 

The following tests were conducted independently:  

a. Run both tasks sequentially in the main method. 

b. Run both tasks concurrently using multi-threading. 

c. Run both tasks concurrently using multi-processing, with 

the first task running in a forked process implemented by 

ProcessBuilder, see Fig. 4. 

 

 
Fig. 4. ProcessBuilder for multiprocessing in Java. 

 

 Both tasks involve consuming a considerable amount of 

memory and having an extensive loading time. For each of 

the above tests, both loading time and runtime stability were 

assessed. 

To measure the first aspect, i.e. loading time, time stamps 

were inserted at strategic points in the code; see Fig. 5 and 

Fig. 6. An elapsed time was determined by finding the 

difference in the time stamps. To evaluate the second aspect, 

i.e. stability, the application was left running for 12 hours or 

until a crash occurred.  

 

 
Fig. 5. Measuring elapsed time in sequential tasks. 

 

 

 
Fig. 6. Measuring elapsed time in concurrent tasks. 

 

VIII. RESULTS AND DISCUSSION 

A. Application performance and stability. 

The tests were carefully repeated several times and the 

findings are summarized in Table I. Running task 1 and task 

2 individually served as control experiments. 

 
TABLE I: SUMMARY OF FINDINGS 

Implementation 
Mean loading 

time 
Crash 

Running 

time 

Task 1 only 3.6 sec Yes 10 mins 

Task 2 only 0.8 sec No > 12 hours 

Sequential >4 sec Yes <4 mins 

Multi-threading 3.2 sec Yes <1 mins 

Multi-processing 3.3 sec No >12 hours 

 

In the sequential implementation, the findings indicate 

that the application is slow, unstable and crash-prone. To 

verify which of the two tasks was responsible for the crash, 

we ran them separately. The result indicates the task using 

the JNI method to be the cause. It violated access of a 

problematic code frame. Inspection of its profile indicates a 

possible memory leak, see Fig. 7. A saw tooth memory 

utilization pattern is a common indicator of a memory leak. 

Fig. 8 depicts the pattern of normal heap memory 



  

consumption, which was observed in the other task, i.e. 

instantiation and loading of GUIs. 

 

 
 

Fig. 7. Saw tooth utilization of heap memory in task 1. 

 

 

 
Fig. 8. Normal heap memory performance in task 2. 

 

 However, a saw tooth pattern can also be the result of an 

active garbage collection [7]. Further inspection indicates the 

absence of the garbage collection activity in task 1; see plot 

for “Relative Time Spent in GC” in Fig. 9. This confirms that 

the saw tooth pattern is not caused by garbage collection but 

by a possible memory leak. Consequently, the surviving 

generations of objects, indicated by the “Surviving 

Generations” plot, are increasing and may eventually 

consume all of the allocated memory. Garbage collection in 

task 2, as indicated by the short curve on the X axis in Fig. 10, 

ensures that the number of surviving generations of objects is 

kept at a constant. 

 

 
Fig. 9. Surviving objects without garbage collection. 

 

 
Fig. 10. Surviving objects with garbage collection. 

 

Unfortunately, accessing native code for the rectification 

of a memory leak is not always possible. Therefore, we 

investigated the possible use of multi-threading or 

multi-processing in order to isolate the problematic task from 

the healthy one. 

Using multi-threading, the loading time is reduced by 28% 

but an unexpected result is that the program becomes even 

more prone to crashing, as evidenced by a shorter running 

time. Memory consumption within JVM revealed a relatively 

sluggish garbage collection and high memory consumption.  

Using multi-processing produces a significant 

improvement. When a new process is started, a new 

application state is initialized by copying values from the 

current application, including standard streams and ‘running 

user’ [13]. We have successfully shown that 

multi-processing is capable of isolating unstable native code 

by having separate memory stacks in a new process; see Fig. 

11. Should the native code crash in its own native memory 

stack, it will not propagate into the Java method stack 

memory. The limitation however, is that since separate 

processes do not share memory blocks, communication 

between tasks is not direct but through message passing 

using input/output streams. Hence, this may not be feasible 

for achieving a high performance if both tasks need to 

communicate very frequently or to share large amounts of 

data. 

 

 
Fig. 11. Proposed multi-processing using Java 

ProcessBuilder. 

 

B. Effect on the physical memory of the host 

In multithreading, the used heap keeps growing in size 



  

until it reaches 10MB, see Fig. 12. In multiprocessing, 

however,  the size of the used heap remains below 10MB, at 

about 8MB; see Fig. 13. 

 

 
Fig. 12. Multithreading of both task 1 and task 2. 

 

  

 
Fig. 13. Multiprocessing of both task 1 and task 2. 

 

Although multi-processing does not seem to require more 

heap memory than multi-threading, there is a possibility that 

more memory has been allocated outside of the JVM for 

running the native code. The profiling utility used does not 

give information on host memory consumption. Thus, a 

system tool such as Windows Task Manager was used to 

inspect the amount of physical memory consumed before and 

after running the experiments. 

The results in Table II indicate that the use of 

ProcessBuilder does not incur more physical memory than 

multi-threading. Surprisingly, the amount of memory utilized 

when running the tasks concurrently is not much different 

from running the task individually. This is probably due to 

the small memory footprint of the JNI task, making the 

difference not significant. Furthermore, usage of the Task 

Manager may be prone to inaccuracy due to there being many 

other background programs running and so it is not able to 

exclusively measure the application. 

 
TABLE II: PHYSICAL MEMORY CONSUMPTION ON HOST 

No. Scenario 
% memory 

consumed 

1 GUI only 3.59% 

2 JNI only 2.13% 

3 Sequential 3.75% 

4 Multithreading 3.69% 

5 Multiprocessing 3.57% 

 

The results were obtained from tests conducted on 

Windows XP SP2. Results from tests conducted on Windows 

Vista and Windows 7 have, however, been deliberately 

omitted. This is because the application tested on both 

platforms did not crash immediately, although similar 

patterns of memory consumption and loading behaviors were 

observed. As the intent of this paper is to show that 

ProcessBuilder is a good strategy to prevent instability 

leading to a crash, we chose to display test results from the 

least stable platform. 

 These findings are useful because sometimes an 

application may need to access a native library function on 

the host computer and this activity might be unstable, 

causing memory leakage and thus bringing down the 

application. As with ‘exceptions throwing’, the errors caused 

by a referenced library should be managed so that if 

necessary the application can either rollback the process to a 

previous state or gracefully shut itself down.  

 Multi-processing requires the operating system of the host 

computer to allocate resources that are separate from the bulk 

of the application, which is beneficial to the application 

because any memory leakage or other problem is then 

isolated from the main part of the application. In Java, this 

can be done using the ProcessBuilder class which can be 

easily coded using Threads and Runnables. Any library file, 

not necessarily wrapped in JNI, can be run as a task. The 

drawback is the lack of communication between concurrent 

tasks in separate processes, which is important to 

applications with plenty of message passing, synchronization 

and coordination. 

 

IX. CONCLUSION 

Our experience shows that failing native code can be 

tolerated in a Java application if the task can be isolated as a 

separate sub-process. A carefully written Java program may 

not be immune from buggy native code unless rectification 

has been undertaken on the native source code. We introduce 

a more convenient solution, the use of Java ProcessBuilder to 

isolate unstable native code. 
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