
JOURNAL OF COMPUTING, VOLUME 3, ISSUE 3, MARCH 2010, ISSN 2151-9617 1

Technique to Rectify Displaced Vector Graphics

Drawn Over Scalable Raster Drawing

Yew Kwang Hooi, Wan Fatimah Wan Ahmad and Leong Siew Yoong

Abstract—Demarcation circumscribes sections of interest of

an image by drawing perimeters known as clouds. The clouds

are vector graphics stored as an array of coordinate points

drawn on the raster image at runtime. At design time, presence

of two or more separate coordinate systems introduces disparity

in coordinate scales and origin. Consequently, clouds drawn by

are sometimes displaced. This paper proposed a drawing

mechanism in Java Graphics2D that contains techniques to

prevent graphics displacement problem in systems that combine

vector graphics with scalable raster image. Calibration of scale

sizes and coordinate origins are simple yet useful techniques

that allow vector graphics to be drawn correctly over raster

drawing regardless of the magnification ratio.

Index Terms—Computer interfaces, human computer

interaction, software design.

I. INTRODUCTION

 Demarcation used geometrical lines to draw shapes that

highlight areas of interest on an engineering drawing. An

area surrounded in the shape is called a cloud. This is a

common feature of some image viewing tool such as Acrobat

Reader. In this study, a software tool to view and create

clouds on engineering drawing was developed. Engineering

drawing is often saved in postscript for better portability and

viewing [1].

 In an electrical safety design risk assessment,
1
single-line

diagrams (SLDs) are systematically inspected by safety

engineers to identify possible design flaw that may lead to

safety hazards. If any design component in an SLD is thought

to compromise safety, then a cloud perimeter is drawn to

mark it for further inspection and action. Clouds are depicted

as geometries with dashed perimeters, as depicted in Fig. 1.

1
 SLD is a simplified notation of a power system often used

for power flows studies.

Fig. 1. Example of clouds.

 The clouds should be in an editable format to accommodate

modifications. Hence, cloud shape and position are stored in

vector format whilst the background SLD is commonly in

raster format. Instead of using vector format, a large amount

of existing engineering drawing databases are still in raster

format [1]. Storing vector-valued parameters for engineering

drawing, on the other hand, provides the benefits of easy

scaling, shape manipulation and undoing mistakes [2,3].

Hence, it may be often necessary to mix both types of

graphics in a common environment for display or editing.

Both formats should nevertheless be stored separately for

later retrieval and changes if necessary, i.e. not to rasterize

the vector graphics and merged with the background raster

graphics at file saving.

 This article shows how the Java drawing mechanism can be

exploited to mix vector and raster graphics and to magnify

both types of graphics. The paper pointed out the lack of

facilities in standard Java’s graphics library to address the

displacement issue, hypothesize the cause and suggested an

algorithm to address the problem is proposed. The final

section discusses the result prospect and some limitations of

the algorithm.

II. DRAWING MECHANISM IN JAVA

 The drawing mechanism assumed by the author is common

in most graphics system regardless of its implementation.

Manuscript received March 1st, 2011.
Yew Kwang Hooi is with Department of Computer and Information

Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750

Tronoh, Perak, Malaysia.
(phone: +60166685887, fax: +6053656180, email:

yewkwanghooi@petronas.com.my)

Dr. Wan Fatimah Wan Ahmad is with Department of Computer and

Information Sciences, Universiti Teknologi PETRONAS, Bandar Seri

Iskandar, 31750 Tronoh, Perak, Malaysia.

(phone: +60125151100, fax: +6053656180, email:
fatimhd@petronas.com.my)

Leong Siew Yoong is with Department of Petrochemical Engineering,

Universiti Tunku Abdul Rahman Jalan Universiti, Bandar Barat, 31900
Kampar, Perak, Malaysia.(phone: +60165518999, email:

leongsy@utar.edu.my)

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 3, MARCH 2010, ISSN 2151-9617 2

 The application was developed using Java Swing and Java

Graphics2D. Java is chosen for its portability and better

performance of speed compensated by faster hardware

nowadays. The standard Java libraries, such as Abstract

Window Toolkit (AWT) and Swing, provide rich object-

oriented facilities to develop Graphical User Interface (GUI)

windows, components and graphics. The scope of this work

is 2-Dimensional (2D) graphics, hence mechanism using

Java’s Graphics2D object is described.

 As summarized in Fig. 2 block diagram, image of

engineering drawing is first loaded into BufferedImage

object, a temporary container before the drawing is displayed

on the screen. While in the buffer, drawing can be refreshed,

edited, magnified or mixed with new graphics on top without

causing flickers [6]. This is done by Graphics2D object

acquired from BufferedImage object.

 Graphics is an object used to draw to screen surface in Java,

.Net and most graphics systems. All graphics on the screen,

both vector and raster, are redrawn by the Graphics object

from stored instructions or binary values at every screen

refresh during run-time.

Fig. 2. Cloud drawing mechanism using Java Graphics2D.

 Next, Graphics2D object checks the arrays for information

of cloud objects. Each cloud object contains x and y

coordinate pairs that are used by Graphics2D to determine

the position and shape of the cloud(s) on buffered image.

 Finally, the completed drawing is copied to display. The

buffer cleared for next refresh cycle.

 In the case of adding a new cloud, activating the cloud tool,

as depicted in Fig. 2 and clicking a space on the engineering

drawing will initiate the drawing. The consecutive clicks and

mouse movement will mark the boundary of the cloud. The

events generated will trigger refresh of display, invoking the

following steps:

 Step 1: Load engineering drawing (raster format) into

buffer and retrieve Graphics2D object.

 Step 2: Graphics2D object paints existing clouds onto

the buffer.

 Step 3.1: If there is any unfinished cloud from previous

refresh, Graphics2D will repaint the cloud to the last

point inserted and wait for further consecutive mouse-

clicks to complete the shape of the cloud. A double-click

mouse event signals end of new cloud construction.

 Step 3.2: Else, wait for a new mouse click to initiate

drawing of a new cloud.

 Step 4: If refresh event is generated before a new cloud

is finished, save the coordinates into a temporary array

for next refresh cycle.

 Step 5: Copy all buffer contents (raster format

engineering drawing and vector format clouds) to screen

for display.

 Step 6: Clear the buffer. Repeat all steps for next cycle.

III. SCALING MECHANISM

 From the perspective of SLD, scaling allows for detailed

inspection of components contained within cloud perimeter.

Magnify tool is used to scale graphics, as depicted in Fig. 3.

 Scaling is a useful feature to provide close-up view of an

image or a document when necessary. New scaling metaphor

and ratio automated by scrolling rate were tested [4,5] with

promising results and reasonable practicality.

Fig. 3. Demarcation tools.

 Scaling mechanism of earlier works was done on either

entirely raster or entirely vector graphics but not both. This

work presents scaling mechanism of a composition of both

raster and vector graphics. Magnification should enlarge both

clouds (vector graphics) and rasterized engineering drawing

in the correct proportion simultaneously whenever a user

clicks on anywhere of the image using the magnify tool.

 Programmatically, at every screen refresh, the loaded image

is multiplied with a double value stored in a variable. A value

of 1.0 retains the size of the image at its default. The variable

stores the magnification ratio, i.e. sizenew : sizeold, whereby

size is either width or height of the display. The variable

stores the scaling factor or zoom factor that multiplies the

original size of the image. The significance of value stored in

the variable is depicted in Table 1.

Load drawing into

BufferedImage

Draw cloud(s) onto

BufferedImage

More clouds ?

Swap BufferedImage object

with display image memory.
Repaint ?

Wait for

interrupt
yes

yes

no
no

Rectangle

demarcation

Oval

demarcation

Free-style

demarcation
Select Magnify

Move plot

Erase

demarcation

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 3, MARCH 2010, ISSN 2151-9617 3

TABLE 1
MEANING OF ZOOM_FACTOR VARIABLE VALUES

ZOOM_FACTOR Image size and cloud size

1.0 Default sizes.

< 1.0 Shrunken sizes.

> 1.0 Magnified sizes.

 In code implementation, the variable is declared with

default value 1.0, as depicted in Fig. 4.

Fig. 4. Zoom factor declaration.

 Resizing graphics is an iterative multiplication of the

variable, i.e. zoom factor, with itself and triggered by mouse-

click event. To magnify, the zoom factor is greater than 1.0.

For example, to magnify by 10%, code in Fig. 5 is executed.

Fig. 5. Code to magnify graphics sizes.

 On the other hand, to shrink, the zoom factor is multiplied

with a value less than 1.0. For example, to shrink by 10%,

code in Fig. 6 is used.

Fig. 6. Code to scale down graphics sizes.

 ZOOM_FACTOR is passed as arguments to the scale

method of Graphics2D object. The arguments are important

to increase or decrease the original width and height of the

drawing graphics. The new width and height are derived

from multiplying the initial width and height with the

argument respectively, as depicted in Fig. 7.

Fig. 7. Scaling raster and vector graphics simultaneously using Java

Graphics2D object.

IV. VIEWPORT SHIFT

 One unexpected behavior during magnification is that the

scaled image seems to drift away from the position clicked

by the mouse pointer. Fig. 8. (a) depicts the initial cursor and

mouse pointer positions, which are overlapping. After

magnification, a gap is noticed between the cursor and the

pointer due to new placement of the viewport, as depicted in

Fig. 8. (b).

Fig. 8. (a) Initial mouse pointer and cursor positions.

Fig. 8. (b) Gap between mouse pointer and cursor.

 The cause of the drift is explainable by the position of the

scaling point of reference in the display. The origin, i.e.

coordinate (0,0) is located at the top left position of the

screen. To rectify, the origin should be mapped to the

position of the mouse-pointer. The code in Fig. 9 depicts the

corrective measure.

 In brief, the coordinate of the mouse pointer is retrieved and

adjusted so that it is based on the image coordinate instead of

double ZOOM_FACTOR = 1.0;

ZOOM_FACTOR *=0.9;

ZOOM_FACTOR *=1.1;

Graphics2D graphicsPen

= (Graphics2D)bufferedImage.getGraphics();

graphicsPen.scale(ZOOM_FACTOR,ZOOM_FACTOR);

//graphicsPen draws background image

BufferedImage originalImg =

javax.imageio.ImageIO.read(imageFile);

graphicsPen.drawImage(originalImg, null, 0, 0);

//graphicsPen draws every cloud

for (Cloud c : cloudList) {

 graphicsPen.drawPolygon(c.getXPoints(),

 c.getYPoints(), c.getPointCount());

}

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 3, MARCH 2010, ISSN 2151-9617 4

JScrollPane coordinates. The expected coordinate of the

pointer after magnification can be determined by dividing the

x or y coordinate value with zoom factor. Then, the

difference between coordinate before or after is computed.

The viewport is adjusted accordingly based on the difference

computed.

Fig. 9. Code to adjust viewport to the mouse-clicked coordinate on image.

V. CLOUD- IMAGE DISPLACEMENT.

 Demarcation can be done when the image is at its default

size or after it has been scaled. At default size, demarcation

task is accomplished as desired. However, clouds drawn after

any scaling become unexpectedly. By right, the cloud should

be drawn within perimeter of mouse-clicks, as indicated by

the grey rectangle in Fig. 10.

Fig. 10. Displacement of cloud from intended positions.

 The displacement is caused by lack of calibration of

coordinate systems in Java graphics system. In this work’s

implementation, two coordinate systems are used. JFrame

container (container) and BufferedImage (image) each

contains its own coordinate system [7,8]. Referencing two

coordinate systems pose a grave problem because both do not

share the same origin. The mouse coordinate is based on

coordinate system of JFrame whilst Graphics2D object

(which draws graphics) is based on coordinate system of

image canvas, as depicted in Fig. 11.

Fig. 11. Container coordinate system and image coordinate system.

 Characteristics of displacement are reported in Table 2.

TABLE 2

TASK OBSERVATION

Task Observation

Clouding at default

size.

Cloud is drawn correctly within perimeter

coordinates pointed by the mouse pointer.

Zoom 1.5x, then

redraw similar

cloud.

Instead of appearing within perimeter clicked

using mouse pointer, cloud is displaced, and then

enlarged disproportionately. The displacement
distance from actual point is consistent for all new

clouds drawn after a single magnification.

Zoom 3x, then

redraw similar
cloud.

Displacement distance increases. The displacement

distance that occurs after 3x zoom is twice longer
than displacement that occurs after 1.5x zoom.

Repeat with

different zoom
factors.

Subsequent tests reveal a pattern that displacement

lengthens coherently with magnification ratio.

 To address differences of both coordinate systems, the

container coordinates registered by mouse pointer are

mapped to the image coordinates. This can be done by

calculating the offsets, i.e. the distance between both origins

using equations (1) and (2).

xoffset = (Widthcontainer – Widthimage) ÷ 2 (1)

yoffset = (Heightcontainer – Heightimage)÷ 2 (2)

Container

coordinate

system

Image
coordinate

system

Image

drawing area

javax.swing.JViewport viewport =

JScrollPane.getViewport();

int pointerX =

getXFromImageOrigin(e.getX());

int pointerY =

getYFromImageOrigin(e.getY());

int adjustViewportX = viewport.getX() +

(int) (pointerX - (pointerX / ZOOM_FACTOR));

int adjustViewportY = viewport.getY() +

(int) (pointerY - (pointerY / ZOOM_FACTOR));

viewport.setViewPosition(new

Point(adjustViewportX, adjustViewportY));

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 3, MARCH 2010, ISSN 2151-9617 5

 Adjusting the offsets alone does not prevent the

displacement. Another factor is the scale size of the

coordinate systems, which becomes different after scaling.

 The second factor is not obvious because prior to scaling,

default scale sizes of both coordinate systems are the same,

as illustrated in Fig. 12. Image scaling increases or decreases

the scale size of image coordinate system only. The

unchanging scale size of the container’s coordinate system

eventually leads to discrepancy.

Fig. 12. Coordinate systems with uniform scale sizes.

 An example of erroneous output is depicted in Fig. 13. A

cloud, represented by a smiley shape, should have been

drawn at coordinate (0.9, 0.9) but instead appears at position

(2,2). Mouse-clicks by default register vertices of the

drawing to coordinate system of container instead of image.

On the other hand, Graphics2D object which renders graphics

in Java refers to coordinates of the image, which by now

already has its scale size enlarged.

 Hence, calibration should be done by transforming any

coordinate registered by mouse click event to coordinate

system of the image. Calibration is done on arrays of x and y

coordinates registered by mouse-clicks. The coordinates give

the vertices of the cloud shape. Formulae to calibrate the

coordinate points are given by equations (3) and (4).

ximage = (xcontainer – xoffset) ÷ zf (3)

yimage = (ycontainer – yoffset) ÷ zf (4)

where zf is zoom factor

 (3) subtracts x-coordinate offset value from x coordinate

returned by mouse event. The result is divided by zoom

factor in order to factor out the scaling of the image

coordinate. Similar steps are repeated for the y-coordinate in

(4).

Fig. 13. Enlarged scale size of image coordinate.

 Algorithm in Fig.14 applies equations (1), (2), (3) and (4) to

resolve the displacement problem. In any mouse-click event,

the algorithm is invoked to map mouse pointer coordinates

(which refers to container’s coordinate) to its corresponding

image coordinates. The converted coordinates are stored in

the memory of each cloud and used by Graphics2D object to

draw clouds (as depicted in Fig. 4).

Fig. 14. Algorithm used to correct displacement

Input: container x-coordinate CX, container

y-coordinate CY, zoom factor ZF, container

width CW, container height CH, image width

IW and image height IH.

Output: an array A containing image x-

coordinate and image y-coordinate results.

RESOLVE-DISPLACEMENT(CX,CY)

1. Let A be an new 2-dimensional array.

2. Offset coordinate CX and CY

2.1 OFFSETX=CW/2 – IW/2

2.2 OFFSETY=CH/2 – IH/2

2.3 CX CX – OFFSETX

2.4 CY CY - OFFSETY
3. Calibrate unit scales of coordinates

3.1 A[0] CX/ZF

3.2 A[1] CY/ZF
4. Return A

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 3, MARCH 2010, ISSN 2151-9617 6

6. RESULT AND DISCUSSION

 Unit testing was conducted to evaluate the algorithm. A

gridded image was loaded. A control experiment was carried

out by leaving the image at its default size.

 The demarcation was done by enclosing the letter “T” in

both applications with or without the corrective algorithm as

depicted in Fig. 15a and Fig. 15b. As expected, in both, the

demarcation appeared correctly and exactly at where it was

intended.

 The second demarcation was done after zooming of the

image, this time on letter “E”. Fig. 15. (a) shows unwanted

displacement of the bounding rectangle. Similar attempts

were repeated on application with the corrective algorithm, as

depicted in Fig. 15. (b). The result shows absence of

displacement, suggesting that the algorithm effectively

removes the displacement-due-to-zooming problem.

Fig. 15. (a) Images before corrective algorithm applied.

Fig. 15. (b) Images after corrective algorithm applied.

 To confirm, similar testing was repeated with various

images of various zooming degrees using all demarcation

shapes available. All results were positive. Regardless of

number of times the underlying raster image is scaled, the

coordinate position of cloud relative to image is fixed.

 In this study, an application which contains the algorithm

was tested with 5 actual users to ascertain the correctness of

the algorithm. We first demonstrates the use of all three

variations (oval, rectangle and polygonal) of lasso tools for

demarcation and magnification tool to resize the background.

The users were then requested to repeat the attempts on

sample engineering drawing, and reminded to maximize the

usage of magnification tools. After several attempts, they

were queried about what they felt about the demarcation tool:

- correctness, ease of use, precision and sensitivity.

 The algorithm does not exhibit significant appreciable

delays during interactive execution and is not affected by

shape or number of clouds. This is because the coordinates of

the clouds are calibrated only once, that is only when

drawing a new cloud. Then, the Graphics2D object

automatically retrieves the already calibrated coordinates of

each cloud to refresh the display.

 The technique is useful if the coordinate system of mouse

event is incongruent with the coordinate system of draw

components. Since this algorithm is developed and tested for

graphics environment in Java, it may not work without

modification for graphics system with dissimilar architecture.

 Although the technique is developed to solve a problem of a

specific application, the solution is applicable to generic

problems with similar attributes, i.e. coding that mixes both

vector and raster graphics with scaling features. The

technique has very low coupling with the rest of the code,

hence can easily be implemented as a class method for reuse

by other applications through a static class method

invocation.

7. CONCLUSION

 This work provides a simple yet useful technique to

calibrate positioning of vector shapes on raster background

due to disproportionate scale sizes of two or more coordinate

systems and different coordinate origins. The problem can be

resolved by first resolving origin offset and then

multiplication with inverted zoom factor to convert the

container coordinate to the image coordinate. The converted

values are stored and to be used repeatedly by Graphics2D to

draw clouds of any vector shapes correctly on any zoom

factor. The algorithm prevents displacement and preserves

relative sizes of the clouds.

 Future work may investigate reusability of similar technique

for implementation with similar vector overlaying raster

drawings but occurring in a different graphics environment.

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 3, MARCH 2010, ISSN 2151-9617 7

ACKNOWLEDGMENT

 Authors thank Ir. Salmey Hassan of Petronas for sharing

information about occupational safety and design safety; Mr.

Fakhizan Romlie of Electrical and Electronics Engineering

for assistance in Single-Line Diagram; Professor Dr. Jubair

Al-Mujawar and Dr. Etienne Schneider for constructive

comments.

REFERENCES

 [1] Boose, et. al., "A scalable solution for integrating illustrated parts

drawings into a Class IV Interactive Electronic Technical Manual," in

Document Analysis and Recognition, 2003.
[2] Sonmez, A.I.,"Interactive computer aided drawing, manipulating,

storing, retrieving and analyses of overall facility layout," in Factory

2001- Integrating Information and Material Flow, Second
International Conference, Cambridge, 1990.

[3] Y. C. Kuo, “An Interactive Design System for Engineering Drawings,”

in IEEE Computer Software and Applications Conference,
Proceedings. COMPSAC 79. The IEEE Computer Society's Third

International, p.738-743, 1979.

[4] R. St. Amant, T. E. Horton, “A tool-based interactive drawing
environment,” in ACM International Conference Proceeding Series;

Vol. 24 Proceedings of the 2nd International Symposium on Smart

Graphics, p. 86 - 93, Hawthorne, New York, 2002.
[5] A. Cockburn., J. Savage and A. Wallace, "Tuning and Testing

Scrolling Interfaces that Automatically Zoom," in ACM CHI 2005,
Portland, Oregon, USA, 2005.

[6] A. Denault, J. Kienzle, “Avoid Common Pitfalls when Programming

2D Graphics in Java – Lessons Learnt from Implementing the Minueto
Toolkit. “, in ACM Crossroads 13.3: Computer Graphics, p.100, 2007.

[7] Oracle. (2010, April 12). JavaTM 2 Platform Std. Ed. v1.4.2. [Online].

Available: http://download.oracle.com/javase/1.4.2/docs/api/java/
awt/event/MouseEvent.html

[8] Oracle. (2010, April 12). JavaTM 2 Platform Std. Ed. v1.4.2. [Online].

Available:
http://download.oracle.com/javase/1.5.0/docs/api/java/awt/image/Buffe

redImage.html

