
International Journal of Computer Applications (0975 – 8887)

Volume 82 – No3, November 2013

22

Solving a Reconfigurable Maze using Hybrid Wall

Follower Algorithm

Abu Bakar Sayuti Saman

Department of Electrical and Electronic Enginnering
Universiti Teknologi PETRONAS

Seri Iskandar 31750 Malaysia

Issa Abdramane
Department of Electrical and Electronic Enginnering

Universiti Teknologi PETRONAS
Seri Iskandar 31750 Malaysia

ABSTRACT

A key feature of an autonomous vehicle is the ability to get to

a target location while traversing through a previously

unknown environment. Mapping the environment will allow

the vehicle to find an optimum path. This paper explores this

issue by programming a mobile robot to find the shortest route

in a reconfigurable maze. A wall follower algorithm with

combined left-hand and right-hand rules is implemented upon

several different maze configurations. It is found that the

hybrid algorithm has improved the maze solving capabilities

of the maze robot significantly.

General Terms

Autonomous, navigation, robotics, localization, mapping.

Keywords

Reconfigurable maze, path optimization, micromouse, wall

follower.

1. INTRODUCTION
An autonomous vehicle is basically a mobile robot that does

not require external assistance in order to drive itself from one

location to another. It must have a localization system to

know its location relative to the surrounding. It uses a

mapping system to gather important information such as

obstacles, terrain and path from the environment it is in.

On a terrestrial open space, data from the surrounding terrain

is detected using many types of sensors such as ultrasonic

sensors, laser range finders and cameras [1,2]. The robot also

can rely on global reference point such as GPS coordinates. In

some other cases such as autonomous in a building, the

system needs to be able to map its surrounding by getting

information from its environment. In confined spaces, such as

in caves [3], underground tunnels, or under the rubbles of a

collapsed building, the robot can only rely on limited sensors.

This is because the overall size of the robot must be relatively

small and light so that it is more maneuverable. It has to

depend on simple and small and low power sensors such as

ultrasonic sensors and infrared sensors.

In developing mapping algorithm for an autonomous robot in

a confined space described above, a maze can be used to

simulate the environment. Many algorithms for maze

navigation and maze solving have been developed and

continue to be improved over the years.

A famous competition where the algorithms are put to test is

called Micromouse, an international event which is very

popular in the United Kingdom, Japan, India and South

Korea. The main idea of the event is to provide maze robots

with a competitive arena in finding a target point through the

shortest path possible and with the least amount of time.

Initially, a robot will navigate the maze to find the target

point. Once the target point is located, the robot will identify

the shortest path. In the second round, the robot should be

able to navigate the maze through the shortest path and

shortest time towards its goal [4,5].

2. MAZE-SOLVING ALGORITHMS
Some of classic maze solving algorithms usually employed

are random mouse, wall follower and flood fill algorithms.

The wall follower algorithm is commonly used when the

position of the target point is unknown. The target is usually

identified with a unique marking. On the other hand, the flood

fill algorithm is commonly used when the position of the

target point is geometrically known but the robot needs to find

the shortest route. The following sections describe the flood

fill and wall follower algorithms [6-9].

2.1 Flood Fill Algorithm
The flood fill algorithm is by far the most famous and

efficient algorithm to solve all types of maze but commonly

with a preset target point. The maze is made up of cells (x,y)

that are represented by a two dimensional array. The cell that

contains the target point is called the target cell, located at

(0,0). Initially, the algorithm assigns to each cell a value that

represents the distance between the cell and the target cell.

Relative to the target cell, its immediate neighbouring cells

have the distance values of 1. The cells next to them will

contain values 2; and the next cells, values of 3; and so on

[9,10].

The flood fill algorithm gets the current information of the

cell that the robot resides in and predicts its distance from the

end cell. While moving towards the goal, it updates all walls

encountered and makes the correct turn if it has to. Based on

the assumption of the goal point, the robot should be able to

make the correct turn and avoid taking unnecessary routes

algorithm. Figure 3 shows a flow chart abstracting a typical

flood-fill algorithm [5,11].

2.2 Wall Follower Algorithm
In wall follower algorithm, the robot will keep an eye at the

right or left wall and navigate throughout the maze until it

finds the target point. This algorithm is proven to be very

efficient for mazes that are wall-linked to the target point [4,

6]. This makes it very suitable for mazes where the target

point is located at the periphery, a situation where the robot

almost appears like trying to escape the maze.

There are two types of wall follower algorithm: left-hand rule

and right-hand rule. The two algorithms work the same way

except turning priority will be either to the left or to the right

depending on the type of rule used [5,6].

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No3, November 2013

23

2.2.1 Left-hand Rule
The left-hand rule works in such a way that the robot focuses

more on its left-side and front-side while it has options for

turns. The robot will turn right only if there are no other

possibilities while it always turns to the left if there is an

option, as illustrated by the flowchart in Figure 1 [12].

Start

Go Forward

Left Opening?

Front Wall?

End Point? Turn Around

End

N

Y

Right

Opening?

Y

Y

N

Y

N

N

Path Shortening

Replay

Turn Left

Turn Right

Fig 1: Flow-chart for wall follower algorithm using the

left-hand rule navigation

A pseudo-code for wall follower algorithm with the left-hand

rule is as follows:

Wall follower, Left-hand Rule

While Not target_point

If left is open Then

 turn_left

Else If front is open Then

 go_forward

Else If right is open Then

 turn_right

Else

 turn_around

Loop

When applied to a maze, the algorithm will not necessarily

find the shortest path to the destination cell. The maze shown

in Figure 2 is more suitable for the right-hand rule method.

When the left-hand rule is applied, the algorithm does not find

the most optimum path the goal. In contrast, when right-hand

rule is applied, a shorter path is found, as shown in Figure 3.

For the same type of maze, the performance of using left-hand

and right-hand rule will differ in the performance of the

navigation.

 Fig 2: Left-hand rule implementation not the most

efficient in this maze

Fig 3: Right-hand rule implementation produces a better

result but still not the shortest path

The algorithm for right-hand rule only slightly differs from

the left-hand rule, as highlighted in the following pseudo-

code:

Wall follower, Right-hand Rule

While Not target_point

If right is open Then

 turn_right

Else If front is open Then

 go_forward

Else If left is open Then

 turn_left

Else

 Turn_around

Loop

2.2.2 Failure of Wall Follower Algorithm
A major drawback of this algorithm is that it can be used only

on simple mazes where the target point is wall-linked. Prior

knowledge whether the maze is left-walled or right-walled is

indispensable or otherwise the robot will keep looping

through the maze forever. All these factors made the wall

follower algorithm not really suitable for maze solving

competitions because of its lack of intelligence for the robot.

Figure 4 illustrates an example of a failure of wall follower

algorithm with left-hand rule when implemented in a maze

where the destination is located in the middle.

3. IMPLEMENTATION OF WALL

FOLLOWER ALGORITHM IN A

RECONFIGURABLE MAZE
This paper describes the implementation of a wall follower

algorithm on a variety of mazes. The base maze is fixed but

the layout of the wall is reconfigurable. It is a continuation of

previous related work whereby a fixed maze was used for an

implementation of the flood fill algorithm [9]. This work is

part of an on-going work in developing a highly intelligent

autonomous navigation system for small mobile robot in a

confined space.

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No3, November 2013

24

Fig 4: Failure of Left-hand Rule Wall Follower Algorithm

In the fixed maze, the target cell was fixed in the middle. The

algorithm was used to find the shortest path to the goal and

this path was saved in its memory so that it can always get

back to the target cell using the shortest path.

In this work, the walls of the maze are detachable, thus the

maze can be configured in many different configurations.

However, the maze is still made up of cells of the same size.

The target point is not fixed to a specific cell. This explores

the usability of wall follower algorithm in finding a path that

solve an unknown maze with an unknown target location and

later optimizing the path.

To navigate different type of mazes, both left-hand and right-

hand navigation rules of the wall-follower algorithm are

adopted. In this case, the navigation rule is selected based on

the first side opening encountered. This combination of both

rules maximizes the capability of the robot to be able to

navigate more complex type of mazes and also in some cases,

will help to avoid unnecessary long navigations. Figure 5

illustrates the combined navigation rule used in the wall

follower algorithm implementation.

4. RESULTS AND ANALYSIS
The use of the wall-follower algorithm with the combined

navigation rules can greatly improve the navigation time of

the vehicle. An experiment was conducted using

Configuration A which is illustrated in Figure 6. The use of

the hybrid algorithm is based on which side an opening is

encountered first. If the left opening is encountered first, the

left-hand rule is selected. Whereas if the right opening is

encountered first, then the right-hand rule algorithm is

selected.

From the figure, one can see that the choice of the right hand

rule algorithm is optimal. The two different line and arrow

types indicate the choice taken by the vehicle based on the

navigation rules used. The dashed lines show the path

traversed using the left-hand rule only. The solid lines indicate

the choice made by the hybrid algorithm to use the right-hand

rule base on the location of first opening encountered on the

right side of the robot. It clearly shows that the use of the

hybrid algorithm provides more intelligence to the robot in

navigating the maze.

When traversing the maze to find the target cell, the path is

memorized by recording every move that have been executed.

The moves are denoted by F (for moving forward), L (turning

left), R (turning right) and B (turning back or making a 180⁰
turn). Figure 7 illustrates all the moves recorded when

navigating a maze of a simpler configuration, called

Configuration B.

Start

Go Forward

Left

Opening?

Front Wall?

End Point?

End

N

Y

N

N

Path Shortening

Replay

Y

Left-hand

Rule?

Y

Turn Left

Right

Opening?

N

Turn Right

YFront Wall?

Right

Opening?

Left

Opening?

N

N N

N

Turn Around

YY

Y

Y

 Fig 5: Flowchart of Hybrid Wall Follower Algorithm

Fig 6: Optimum Navigation by Choosing the Right-hand

Rule of the Wall Follower Algorithm in Configuration A

After the target cell is reached, the robot can be placed at its

starting cell again and it will autonomously navigate to the

target cell using the path that it has recorded. In this case the

path is already optimum, thus no further processing was done.

4.1 Path Optimization
By choosing the correct navigation rule to follow, the path

taken may be shorter but not necessarily the most optimum in

terms of moves taken. The path may contain redundant

moves. A move is considered redundant when it took the

robot back to where it was before.

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No3, November 2013

25

After the target cell has been found during the initial

navigation, the whole path is analyzed so that it can be

optimized. The algorithm goes through the list of moves in the

path, identifies any sequence that contains a redundant move

and replaces the sequence with an optimized i.e. shorter one.

(1) (2)

(3) (4)

(5) (7)

(8) (Re-run)

Fig 7: Navigation Through Configuration B

Primarily, the B move is always redundant. For example,

consider a sequence FBL where the robot turns left, moves

forward, makes a 180⁰ turn and then turns left. This sequence

is equivalent to FR where the robot only needs to move

forward and then turn right.

Other similar sequences are analyzed this way. Some of the

sequences that have been identified to contain redundancy and

can be optimized are listed in Table 1 together with their

shorter equivalents.

The path optimization is done through a path shortening

algorithm described with the following pseudo-code.

for i = 1 to M

 if m[i] = B then

 if m[i-1] = L then

 n[j] = R

 j = j+1

 else if m[i-1] = L and m[i+1] = R then

 n[j] = B

 j = j+1

 else if m[i-1] = L and m[i+1] = F then

 n[j] = R

 j = j+1

 else if m[i-1] = R and m[i+1] = L then

 n[j] = B

 j = j+1

 else if m[i-1] = F and m[i+1] = L then

 n[j] = R

 j = j+1

 else if m[i-1] = F and m[i+1] = F then

 n[j] = B

 j = j+1

 else if m[i-1] = L and m[i+1] = L then

 n[j] = F

 j = j+1

 else if m[i-1] != B and m[i+1] != B then

 n[j] = B

 j = j+1

next i

Table 1. List of Move Sequences and Their Optimized

Equivalents

Original Sequence Shortened Sequence

LB LR

LBR LB

LBF LR

RBL RB

FBL FR

FBF FB

LBL LF

The path shortening algorithm is based on the data in Table 1.

In the pseudo-code: M is total number of moves in current list,

m[i] is current move, m[i-1] is previous move, m[i+1] is

next move, n[j] is current move in the new list of moves, i

holds the counter for the current move being examined and j

holds the counter for the current move in the new list.

The implementation of the path shortening algorithm is

illustrated in Figure 8. In this implementation, the algorithm is

applied onto the list of moves (path) several times until all the

necessary B moves are removed.

When the robot is placed back at the starting point, it

autonomously navigates towards the destination cell using the

optimized path information.

5. CONCLUSION
A wall follower algorithm with selectable left-hand or right-

hand navigation rule can provide more flexibility and

intelligence for maze navigation. The selection of the

navigation rule is done dynamically based the scenario

encountered by the vehicle. With the addition of path

optimization done through the path shortening algorithm, the

combined system can provide practical improvement to

autonomous vehicles.

While the algorithm improves the navigational capability of

the robot, it is however unable to cope with certain maze

configurations. A set of walls that form an island, will force

the robot to encircle it indefinitely. An improvement being

worked on is the detection of the infinite looping and the

ability to switch to another navigation algorithm to exit from

it.

Future works may also include other types of small sensors to

improve the ability of the robot to detect its surrounding more

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No3, November 2013

26

accurately. The processing power of the robot can also be

improved by using faster and more powerful microcontrollers.

(1) (2)

(3) (4)

(5) (6)

(7) (8)

(9) (Re-run)

Fig 8: Navigation through Configuration C

6. REFERENCES
[1] Verner, I.M. and D.J. Ahlgren, Robot contest as a

laboratory for experiential engineering education. J.

Educ. Resour. Comput., 2004. 4(2): p. 2.

[2] Achmad, B. and M.N. Karsiti. Visual-based fuzzy

navigation system for mobile robot: Wall and corridor

follower. in Intelligent and Advanced Systems, 2007.

ICIAS 2007. International Conference on. 2007. Kuala

Lumpur.

[3] Vignesh, S., et al., Cave Exploration of Mobile Robots

using Soft Computing Algorithms. International Journal

of Computer Applications 71(22):14-18, June 2013.

Published by Foundation of Computer Science, New

York, USA.

[4] Mishra, S. and P. Bande. Maze Solving Algorithms for

Micro Mouse. in Signal Image Technology and Internet

Based Systems, 2008. SITIS '08. IEEE International

Conference on. 2008.

[5] Cai, J., et al., An Algorithm of Micromouse Maze

Solving, in Proceedings of the 2010 10th IEEE

International Conference on Computer and Information

Technology. 2010, IEEE Computer Society. p. 1995-

2000.

[6] Jianping, C., et al. A micromouse maze sovling

simulator. in Future Computer and Communication

(ICFCC), 2010 2nd International Conference on. 2010.

[7] Adil, M.J.S. A Comprehensive and Comparative Study

of Maze-Solving Techniques by Implementing Graph

Theory. 2010.

[8] Sharma, M. and K. Robeonics. Algorithms for Micro-

mouse. in Future Computer and Communication, 2009.

ICFCC 2009. International Conference on. 2009.

[9] Elshamarka, I. and A.B.S. Saman, Article: Design and

Implementation of a Robot for Maze-Solving using

Flood-Fill Algorithm. International Journal of Computer

Applications, 2012. 56(5): p. 6.

[10] Cai, Z., L. Ye, and A. Yang. FloodFill Maze Solving

with Expected Toll of Penetrating Unknown Walls. in

2012 IEEE 14th International Conference on High

Performance Computing and Communications. 2012.

[11] Willardson, D.M., Analysis of Micromouse Maze

Solving Algorithm, in Learning from Data. 2001,

Portland State University.

[12] Babula, M. Simulated maze solving algorithms through

unknown mazes. in Proceedings of XVIIIth

Concurrency, Specification and Programming (CS&P)

Workshop. 2009.

IJCATM : www.ijcaonline.org

