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Abstract. Frequency estimation is a vital tool for many power system applications such as load 

shedding, power system security assessment and power quality monitoring. Moreover, the 

complexity and noisiness of modern power system networks have created challenges for many power 

system applications. Fast and accurate frequency estimation in the presence of noise is a challenging 

task. Sliding window with the complex form of least mean square (LMS) algorithm has been utilized 

in this study in order to improve the frequency estimation in noisy power system. Different simulation 

cases have been examined for signal with different signal to noise ratio (SNR) and to evaluate the 

performance of sliding window method for better frequency estimation. The results obtained show 

that the sliding window method with LMS is able to improve and enhance the frequency estimation 

even when the (SNR) is small compared to the existing LMS method. 

Introduction 

In power system, frequency estimation is an important task since it is generally used to indicate the 

system abnormal conditions. The imbalance between the system load and generation leads to 

variation in frequency. Furthermore, fault and overloaded system disturb the frequency in various 

levels. Therefore, understanding of the frequency deviations can describe the power system condition 

and hence, frequency estimation is vital tool involved in many applications in power system such as 

load shedding, power system security assessment and power quality monitoring. Fast and accurate 

frequency estimation is essential to maintain the system in normal operation. The common method 

used of frequency estimation is Zero-Crossing method [1-2]. However, this method is based on pure 

waveform but in reality the power system voltage signals is polluted signals due to the complexity of 

modern power system components and advance in technology of equipments involved in the system. 

Therefore, several methods has been introduced in the literature to cope with polluted signals such as 

least mean square (LMS), Phase-locked Loop (PLL), Fourier Transform (FFT), Weighted Least 

Square (WLS) technique, Kalman Filter, Adaptive Notch Filter, artificial neural network (ANN) as in 

[1-9] and Newton-type algorithms [10].The adaptive filter based on the LMS proposed in [1] should 

not be overlooked due to simplicity structure and low computational complexity of LMS.  

LMS is the most popular adaptive algorithm and has been widely applied in many applications 

such as communication and digital signal processing.  The LMS has been introduced by Widrow and 

Hoff [11]. However, LMS algorithm suffers from data-dependent behavior and sensitivity to the 

noise. Variable step size LMS introduced  in [1] to increase the convergence rate of LMS has been 

adopted in this paper with moving average search direction (sliding window) in order to overcome the 

problem of  LMS as well as to work with noisy signals that may appeared in modern power system 

environment.  

A sliding window LMS-based adaptive filter of frequency estimation is proposed utilizing the 

three-phase voltages. A complex signal is obtained from the three-phase voltages by using αβ		transform [1], [12]. Then the instantaneous frequency estimation through the complex form of 

LMS in [1], [13] with a sliding window of input observations has been implemented. The 

performance of a sliding window LMS-based adaptive filter of power system frequency estimation 

has been examined in several cases through simulated and real data.  
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Background 

Adaptive filter.  An adaptive filter is a self-modifying filter that adjusts its parameters to minimize an 

error function (the difference between the desired value and the output of the adaptive filter in each 

iteration), [14].The basic configuration of an adaptive filter, operating in the discrete-time domain k is 

shown in Fig. 1. 

 
Fig.1. Adaptive filter 

The input signal is given by �(�) the reference signal or desired signal �(�) represents the desired 

output signal (that usually includes some noise component), and 	(�) is the output of the adaptive 

filter, and hence the error signal is defined as e(k) = d(k) − y(k)																																																																	(1) 
LMS based fundamental frequency estimation.The three-phase voltages of a power system can be 

represented in continuous-time domain as: V�(t) = V� cos(wt + ∅) + ε�(t)																																									(2) 
 V�(t) = V� cos �wt + ∅ − 2π3 � + ε�(t)																														(3) 

 V (t) = V� cos !wt + ∅ + "π# $ + ε (t)                              (4) 

 

Where, V� is the peak value of fundamental component, ε is the noise process, ∅ is the phase of 

fundamental component, and  w is the angular frequency of the voltage signal (w = 2πf) with 	system frequency	f. The complex form of signal derived from the three-phase voltages is obtained by αβ transform [1] as follow: 

 

!(α())(β())$=*"#+1 − ," − ,"0 − √#" − √#"
/ 0(V�(t) V�(t) V (t))12																														(5) 

 

A complex voltage V(t) can be obtained from the above as the following: 

 			V(t) = Vα(t) + jVβ(t)																																																											(6) 
 

The voltage V(t) can be modeled as 

 V(t) = Ae7(8)9∅) + ε(t) = V:(t) + ε(t)				, A = *Vα(t)" + Vβ(t)"												(7) 
 V(t) = Ae7(8)=)e7(8)>8)=9∅) + ε(t)																																																																										(8) 
 V:(t) = e7(8)=)V:(t − t@)																																																																																														(9) 
 V:(t) = WV:(t − t@)																																																																																																				(10) 

 θ = e7(8)=)																																																																																																																				(11) 
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 		e(t) = V(t) − V:(t)																																																																																																				(12) 
 θ = θ + µeV:(t − t@)∗ 																																			,			∗ is	the	conjugate																					(13)  
  

  θ = e7(8)=)=cos(	wt@) + jsin(wt@)                                                              (14) 

 

                sin(wt@) = Im(θ)             wt@ = sin>,0Im(θ)1                                           (15) 

 f@ = ,"π)= sin>,0Im(θ)1           w = 2πf@                                (16) 

 

Based on [1], [15] and [16] the step size µ(t) for each iteration has been updated as following:  

 	µ(t + 1) = λµ(t) + γp(t)p(t)∗																																																									(17)        
 

*is the conjugate used to work with complex LMS  

and p(t) is used to control the update of the step size  

 p(t) = δp(t − 1) + (1 − δ)e(t)e(t − 1)																														(18)        
 O is a positive weighting parameter between 0 < O<1  that governs the time average of e(t)e(t −1)			, 0 < Q < 1 and 0 < R the step size is limited between µ��S and µ�TU to control the mean square 

error [15-16]. 

Sliding window learning (SW). SW training algorithms, also known as high order training 

algorithms which use the system input/output observations from previous input/output data until the 

current input/output data to perform instantaneous learning; typically the model weights are updated 

using information obtained from store of (L) previous training vectors [17,18]. 

 V = 0�,, �", �#, …	�X1			,						Y = 0	,, 	", 	#, …		X1							(19) 																																																									 													Z = [�,, �"	. . . �X>,, �X	,, 	"	. . . 	X>,, 	X]																																																				(20)	
 

S is store of the data depend on the model structure and in this paper S contain only input .Given 

(L) vector data store and the current data points �^, this algorithm computes a moving average search 

direction for (LMS) as the following: 

MA) = αLaeTSTc
T + (1 − α)e)S)																																								(21) 

0 < d < 1 

The weighting factor α controls the contribution of the current vector to the moving average search   

In this paper the moving average to update the weights of Eq. (13) for frequency estimation based 

on the previous information obtained from store of (L) previous training vectors is given as follow: 

 

e = e + fdg ahijk(l − l@)∗iX
i + (1 − d)h^jk(l − l@)∗^																												(22) 
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Simulation and Discussion   

The simulation of power system frequency estimation through the utilization of sliding window LMS 

has been done by using MATLAB program M file during several conditions that can be found in real 

system. The parameters in Eq. (17) and Eq. (18) are set based on [1], [15] and [16]. Which are β 

=0.99, λ = 0.97	, γ = 0.01,μ��S = 0.18, μ�TU = 0.0001 and sampling frequency 5KHz. The initial 

value of f and p	 highly influence the performance of the estimator for instance if the initial value of (p)		is large that lead to larger(μ) and faster convergence speed and vice versa. But the large value of (p)		 makes the estimator fast and sensitive to the noise and lead to oscillation in the estimator. 

Therefore, the sliding window method which is introduced in this paper aims to cope with noisy 

signal and improve the performance of the estimator by maintaining fast convergence with less 

sensitive to the noise even when the noise to ratio SNR is small 

Noiseless signal. When the system is noiseless or the signal is pure sine wave, the greater value of (q	) make the convergence faster and not lead to oscillation. Fig. 2 and Fig. 3 Show the convergence 

rate to the fundamental frequency with large and small initial value of(q ) 

 
 

 

 

 

Fig. 2 and Fig. 3 show the estimation of the fundamental frequency for three phase voltage signal 

with noise free contain fundamental frequency equal to (50 Hz), for a small and large value of (p) 
respectively. It can be seen from Fig. 2 is that the estimator couldn’t converge to the fundamental 

frequency, which is (50 Hz), while converge after (53) iteration when large value for (p) applied as in 

Fig. 3 which mean that large initial value of	(p	)	make the estimator fast but unfortunately sensitive to 

noisy signal. 

Signal with noise. In general, the noise influences the performance of LMS estimator. Furthermore, 

to evaluate the performance of the estimator of a noisy signal,  different noise to signal ratio SNR is 

added to each phase signal with (50 Hz ) fundamental frequency initialized at 49Hz. Fig. 4 shows the 

performance of LMS with large value of (p) with (SNR = 20 dB). 
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Fig.2 Estimation of the fundamental 

Frequency with LMS when p initialized 

in small value  

Fig.3 Estimation of the fundamental frequency 

when p initialized in large value  
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It can be seen from Fig. 4, the noise influences the LMS estimator. In order to reduce the influence 

of the noise as well as to maintain the robustness and fast convergence of the estimator, the sliding 

window method is utilized. Fig. 5 shows the performance of L = 5 window size sliding window, 

which is applied to 20 SNR noise ratios. The sliding window-LMS can improve the estimator 

performance in a noisy system. The results obtained in the Table. I, II and III shows the mean, 

standard deviation and maximum value to the error between desired frequency (50 Hz) and the 

estimator output frequency to each iteration for (400) input samples with different SNR ratio.  

 

Table.I FREQUENCY ESTIMATION FOR 20 SNR                             Table.II FREQUENCY ESTIMATION FOR 30 SNR  

                                                                      

Table.III. FREQUENCY ESTIMATION FOR 40 SNR               

 

Estimator performance in 40 SNR 

Algorithm  Std Mean Max 

LMS 0.8929 0.0190 3.2292 

SW=3 0.3447 0.0572 1.1393 

SW=5 0.3591 0.0745 1.2094 

SW=7 0.3576 0.0545 1.1981 

SW=10 0.3669 0.0395 1.1833 

   

From the results obtained from Tables I-III the sliding window LMS gives better performance with 

noisy signals than LMS as it has lower standard deviation for all sliding window size with different 

SNR as known low standard deviation indicates that the data points tend to be very close to the mean. 

In addition, a lower maximum error for sliding window size equal to 10 for 30 and 40 SNR ratios.  

While the sliding window equal to 3 has a lower maximum error at 20 SNR. Sliding window with size 

equal to 5 has almost medium maximum error in the three SNR ratios.  
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Estimator performance in 30 SNR 

Algorithm  Std Mean Max 

LMS 3.0894 0.3438 8.7739 

SW=3 0.9375 0.3823 2.0517 

SW=5 0.9451 0.4104 2.0152 

SW=7 0.9410 0.4077 1.9516 

SW=10 0.9489 0.4326 1.9140 

 

Estimator performance in 20 SNR 

Algorithm  Std Mean Max 

LMS 7.2568 0.098 34.7641 

SW=3 2.5273 0.7457 8.4119 

SW=5 2.6644 0.5533 9.5164 

SW=7 2.9283 0.3684 11.0256 

SW=10 2.8889 0.4572 9.9539 

Fig .4 Estimation of the fundamental frequency 

with LMS when SNR = 20dB 
 

Fig.5 Estimation of the fundamental frequency 

with SW- LMS when SNR=20dB 
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Signal with dynamic frequency change. To represent the worst case condition for dynamic frequency 

change, the frequency is assumed to be randomly and uniformly varying between 48Hz and 52 Hz 

after 100 iteration from the initializing the estimator for 10 iteration.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 shows the comparison between SW and LMS when dynamic change in the signal happen 

clearly more damping in LMS than that in sliding window  

Signal with sudden frequency change. The frequency is assumed to suddenly change from 50Hz to 

48Hz after100 iteration from the beginning of the estimation. Fig.7 shows the LMS performance 

when the signal faced frequency change with noise free signal. It can be seen from Fig.7 that the LMS 

has fast response to the change in the frequency when the signal is free from the noise. But in the real 

case the signal will be with noise, which can affect the performance of LMS. Fig.8 shows the 

performance of LMS and SW with noisy signal. The sliding window LMS frequency estimation can 

perform better than LMS frequency estimation when sudden frequency change happens and the 

signal is contaminated with noise.  
 

 
Fig .8 LMS and SWLMS sudden frequency change with noisy signal 

 

Signal with harmonic. The presence of harmonic in the signal influences the performance of LMS as 

well as sliding window LMS. However,	rs transform eliminates the third harmonic and is not 

influencing the performance of the estimator. but the fifth and above harmonic order can influence the 

performance, thus low pass filter Butterworth with cut off frequency of 200 Hz suggested in [1] and 

[19] as pre-filtering. Moreover, the signal that is used for frequency estimation is transmission a bus 

voltage and usually the fifth and higher harmonic order less than 1 % where no need for pre-filtering 

[1]. 

Signal from real data. The signal was collected from unbalanced voltage source of distribution 

system to examine the performance of SW-LMS under unbalanced voltage. The data was collected 

using fluke 1750 power quality analyser 8 channels with sample rate of 256/cycle. The three phase 

shape, magnitude and phase angles are given as in Fig.9  
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Fig .6 Estimation of the fundamental 

frequency by LMS and SWLMS when  

Fig.7 LMS sudden frequency change  Fig.6 SW and LMS dynamic change  
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Fig.9. Three phase voltage from distribution system 
 

The unbalanced three phase voltages is transformed to the complex form with noise of SNR 50 dB 

and then introduced to the LMS and LMS-sliding window estimator. The result of the estimation is 

shown in Fig. 10. And Fig.11 

 
 

 

 

As shown in Fig.10 and Fig.11 the unbalanced condition of three phase voltage influence the 

performance of the estimator, however, the result obtained by sliding window estimator is better than 

LMS estimator. Furthermore, in the high voltage line which the estimation of the fundamental 

frequency done from its three phases voltage signal, the unbalance between phases is significantly 

smaller than that in distribution system while the data in this paper was taken from distribution system 

to show the performance of both method in highly unbalance signal. 

Conclusion 

Power system network become more complex and noisy system and accurate frequency estimation is 

challenging task. This paper presents the concept of moving average search direction or sliding 

window to cope with the noisy power system environment based on least mean square algorithm. The 

results show strong convergence for sliding window with different windows size L or SW for 

different signal to noise ratio. Furthermore, sliding window technique is tested to real unbalance three 

phase voltages from distribution system and gives better estimation than LMS. 
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Fig .10. LM for unbalance and noisy three 

phase voltage  
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