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Abstract—We use Dzyaloshiniskii-Moriya (DM) interaction to
generate entangled network from partially entangled states in the
presence of the spin-orbit coupling. The effect of the spin coupling
on the entanglement between any two nodes of the network is
investigated. It is shown that the entanglement decays as the
coupling increases. For larger values of the spin coupling, the
entanglement oscillates between upper and lower bounds. For
initially entangled channels, the upper bound doesn’t exceed its
initial value, but for channels generated via indirect interaction,
the entanglement reaches its maximum value.

I. INTRODUCTION

Quantum Information Technology (QIT) promises faster,
more secure means of data manipulation by making use of the
quantum properties of matter [1]. One of the most important
topics the QIT is generating entangled quantum networks.
Quantum networks have implemented experimentally [2], [3],
[4], [5] and theoretically [6], [7], [8], [9].

The Dzyaloshiniskii-Moriya (DM) interaction is a nat-
ural phenomena was discovered in 1960 by Moriya
(Dzyaloshinskii-Moriya (DM) as an antisymmetric, anisotropic
exchange coupling between two spins [10], [11]. It has been
found that the DM interaction creates an strengthens entangle-
ment among the particles which implies that the DM interac-
tion plays an important role in the field of quantum networks
[12]. The quantum correlation as a result of the DM interaction
between two particles is investigated by many authors( see for
examples [13], [14], [15]). The thermal entanglement between
two qubits in the Heisenberg XYZ model and the effect of the
DM interaction and its strength is discussed by Da-Chuang
and Z.-Liang Cao [16]. The effect of the intrinsic decoherence
on the teleportation of two qubits XYZ model is studied in the
presence of DM interaction [17].

Metwally [6] introduced a theoretical protocol to generate
multi-nodes quantum network by using maximum entangled
states, where the terminals of each disconnected nodes are
connected via DM interaction. The possibility of generating
entangled network by using a class of partially entangled
network is discussed by Abdel-Aty et. al, [7]. Therefore we
are motivated to investigate the effect of the spin-orbit on the
efficiency of the generated entangled network in the presence
of DM interaction.

This paper is organized as follows: in section II the model
and its evolution is introduced. The entanglement between the

different nodes is quantifying for different values of the spin-
orbits coupling and DM’s strength in section III. Finally, our
results are discussed in section V.

II. THE MODEL

It is assumed that our aim is generating entangled network
by using partially initially entangled states of Werner type [18],
[7]. Consider a source generates pertial entangled state of the
form

ρij =
1− Fw

3
I4 +

4Fw − 1

3
|ψ−⟩⟨ψ−| (1)

where ij = 12, 34, |ψ−⟩ = 1√
2
(|01⟩ − |10⟩) is the singlet

Bell state, and Fw is the maximal fraction corresponding to
the Werner-state. The initial state of the total system is given
by,

ρ1234(0) = ρ12 ⊗ ρ34 (2)

The Hamiltonian which describe the evoluation of this system
is given by,

H = Jxσ
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(i)
y σ(j)

y + Jzσ
(i)
z σ(j)

z

+Dx(σ
(i)
y σ(j)

z − σ(i)
z σ(j)

y ) (3)

where i, j represent the nodes which will be connected via
DM interaction which is considered in x− axis with strength
Dx , Jx, Jy, Jz are the real coupling coefficients in the x, y
and z axise respectively, and σ(i,j)(i = x, y, z) are the Pauli
matrices for the qubit i and (j). In our case i and j represent
the second and third qubits respectively

The final density operator of the network is given by

ρ1234(t) = U(t)ρ1234(0)U†(t), (4)

where,

U(t) = e−iHt , (5)

is a unitary operator defined by



U (23)(t) =
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(6)

In a matrix form, the unitary operator(6) can be written as

U (23)(t) =

 uee,ee
ueg,ee
uge,ee
ugg,ee

uee,eg
ueg,eg
uge,eg
ugg,eg

uee,ge
ueg,ge
uge,ge
ugg,ge

uee,gg
ueg,gg
uge,gg
ugg,gg

 . (7)

where,

uge,eg = [i sin Jzt+ cos Jzt]

[
sin2Dxt

(− sin Jxt sin Jyt+ cos Jxt cos Jyt)

−i cos2Dxt sin(t(Jx + Jy))

]
uge,ge = [i sin Jzt+ cos Jzt]

[
cos2Dxt

(− sin Jxt sin Jyt+ cos Jxt cos Jyt)

−i sin2Dxt sin(t(Jx + Jy))

]
uge,gg =

1

2
sinDxt(i sin Jxt+ cos Jxt)(i sin Jyt

+cos Jyt)(i sin Jzt+ cos Jzt)

ugg,ee = [cos Jzt− i sin Jzt]

[
sin2Dxt(cos Jxt cosJyt

+sin Jxt sin Jyt)− i cos2Dxt sin t(Jx − Jy)

]
,

ugg,ge = −1

2
sinDxt(i sin Jxt+ cos Jxt)(i sin Jyt

− cos Jyt)(i sin Jzt− cos Jzt)

ugg,gg = [cos Jzt− i sin Jzt]

[
cos2Dxt(cosJxt cos Jyt

+sin Jxt sin Jyt)− i sin2Dxt sin t(Jx − Jy)

]
,

and the uge,gg = −uge,ee, ugg,ge = −ugg,eg = uee,eg =
−uee,ge, uge,ge = ueg,eg, uge,eg = ueg,ge, ugg,ee = uee,gg and
ugg,gg = uee,ee.

Using Eq. (4) and Eq. (7), one gets the final entangled
network between the four nodes. Since we are interested to
quantify the degree of entanglement between the different
nodes, one can obtain the required density operator between
each to nodes by tracing out the other two nodes. For example
the density operator between the first and the second nodes is
given by ρ12 = tr34{ρ1234(t)}.

III. RESULTS AND DISCUSSION

In this section, we quantify the entanglement between each
two nodes. In practically, we consider the channels ρij , ij =
12, 13 and 14. For this aim, we use Wootters’s concurrent as
a measure of entanglement [19] which is defined as,

C = max{
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4, 0}, (8)

where λk, k = 1..4 are the eigenvalues of the matrix
ρij(σ

(i)
y ⊗ σ

(j)
y )ρ∗ij(σ

(i)
y ⊗ σ

(j)
y ).

The entanglement behavior (concurrence) of the entangled
state between the nodes ”1” and ”2”, ρ12 is described in
Figs.(1-3) for different values of the coupling Ji, i = x, y and
z and the strength of DM is assumed to be fixed, Dx = 0.2.
Fig.(1) describes the evolution of the concurrence C in the
presence of zero coupling or only one non-zero coupling. It is
clear that for jx = Jy = Jz , the concurrence decays gradually
to reach its minimum bounds (C = 0.4), then increases to reach
its maximum bounds, which don’t exceed the initial bounds.
This show that the decay due to the interaction of the second
nod with the third nodes, so there are some correlation are
lost. However, when only one non-zero coupling is switched
on, the upper and lower bounds depend on this coupling. The
behavior shows that, the minimum bounds of C for Jx ̸= 0
are always larger than that depicted for Jy ̸= 0 or Jz ̸= 0.
On the other hand, for Jy ̸= 0 or Jz ̸=, the concurrence
vanishes completely i.e., C = 0 as the scaled time increases
and the upper bounds don’t exceed the initial value [6], [7].
In Fig.3, we investigate the behavior of the concurrence where
we consider Jx = Jy = Jz ̸= 0. It is clear that for small
values of the coupling parameters. i.e., Jx = Jy = Jz = 0.1,
the concurrence C decays gradually and vanishes once for
t ∈ [7, 8]. However the upper bounds don’t exceed the initial
value namely at t = 0. For larger values of Ji, i = x, y, z, the
concurrence decays faster but the lower bounds are non-zero
and the upper bounds are slightly increase.

Fig.(2) describes the behavior of the concurrence for the
entangled state ρ12, where two two-non-zero coupling are
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Fig. 1. The dynamics of the entanglement between node 1 and node 2 C12,
where the red line with Jx = Jy = Jz = 0 (without the effect of spin) and
black dot line represent the entanglement with Jx = 0.5 and Jy = Jz = 0
green line when Jy = 0.5 and Jx = Jz = 0 and blue dot dash line the 12
entanglement with Jx = Jy = 0 and Jz = 0 with Dx = 0.2



0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Scaled time

E
nt

an
gl

em
en

t

Fig. 2. The same with fig 1 but where the red line with Jx = Jy = 0.5 and
Jz = 0 and black dot line represent the entanglement with Jx = Jy = 0.5
and Jz = 0 green line when Jx = 0 and Jy = Jz = 0.5 and blue dot dash
line the 12 entanglement with Jx = Jy = Jz = 0.5 and with Dx = 0.2
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Fig. 3. The dynamics of the entanglement between node 1 and node 2 C12,
where the red line with Jx = Jy = Jz = 0.1 and dash green line when
Jx = Jy = Jz = 0.3 and blue dot dash line with Jx = Jy = Jz = 0.5
with Dx = 0.2

considered. The general behavior is the same as that depicted
in Fig.(1), but the number of oscillations between the upper
and lower bounds increases. However, if we compare the solid
curves in Figs.(1&2), we can see that the presences of the
coupling cause a faster decay of the concurrence.

Figs.(4-6), describe the behavior of the concurrence for the
entangled state which is generated between the nodes ”1” and
”3” via direct interaction. Fig.(4) describes the behavior of C
for onle one non-zero coupling is considered, where we use the
same values of the coupling and DM’s strength as considered
in Fig.(1). Sice the two nodes are initially disentangled, then
at t = 0, the concurrence C = 0. However as soon as the
interaction is switched on an entangled state is generated
between the first and the third nodes and consequently the
concurrence increases to reach its upper bounds (C = 0.4).
However for farther increasing t, the concurrence decays to
vanishes completely. This behavior is periodically repeated.

The dynamics of the concurrence, C for the channel ρ13
when two non-zero couplings are considered is displayed in
Fig.(5). The values of Ji, i = x, y, z are the same for Fig.(2).
This figures shows that, the concurrence oscillates between
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Fig. 4. The same with Fig.( 1) but for the channel ρ13 which is generated
between the first and third nodes via direct interaction.
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Fig. 5. The same with Fig. 2 but for the channel ρ13

its lower and upper bounds very fast. The phenomena of the
sudden-death and birth appear of the entanglement are appear
clearly.

Fig.(6) describes the behavior of C for the state ρ13 when
Jx = Jy = Jz ̸= 0, where Ji, i = x, y, z are given the same
values in Fig.(3). It is clear the general behavior is similar
to that depicted in Fig.(5), but the number of oscillations
increases as the values of the coupling increase. However, the
upper bounds are slightly larger for larger Ji.

Finally, we investigate the entanglement behavior for the
state ρ14 as in Figs. (7-9), which is generated via indirect
interaction. It is clear that the behavior of C is similar to that
displays for ρ13. However for the state ρ14, the upper bounds
are much larger and reach to their maximum values, i.e, C = 1.
The number of oscillations of the concurrences as the spin-
orbit coupling increases. On the other hand, these oscillations
increases if all the couplings have non-zero values.

IV. CONCLUSION

We discussed the effect of the spin-orbit coupling on the
entanglement between different nodes of quantum network. In
general, the entanglement decays for non-zero values of the
coupling. The phenomena of the sudden-death and sudden-
birth appear for larger values of the coupling.
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Fig. 6. The dynamics of the entanglement between node 1 and node 3 C13,
where the red line with Jx = Jy = Jz = 0.1 and dash green line when
Jx = Jy = Jz = 0.3 and blue dot dash line with Jx = Jy = Jz = 0.5
with Dx = 0.2
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Fig. 7. The same with Fig. 1 but for the channel ρ14
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Fig. 8. The same with Fig. 2 but for the channel ρ14
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Fig. 9. The dynamics of the entanglement between node 1 and node 4 C14,
where the red line with Jx = Jy = Jz = 0.1 and dash green line when
Jx = Jy = Jz = 0.3 and blue dot dash line with Jx = Jy = Jz = 0.5
with Dx = 0.2

It is shown that, for initially entangled channel, the cou-
pling constant has no effect on the upper bound of entan-
glement. However, for non-zero couplings, the lower bounds
of entanglement do nor vanish. The number of oscillations
is increased as the the coupling is increased. For entangled
channels which generated via direct or indirect interaction, the
concurrence and the number of oscillations are increased as
coupling is increased.

Finally, it is shown that, the generated entangled channel
between any two nodes via indirect interaction has a large
degree of entanglement. The upper bounds exceed the initial
entangled state. Therefor, from less entangled state one can
generated maximum entangled states by controlling the spin-
orbit coupling. This means that, one can use the terminals of
the generate entangled network to perform quantum informa-
tion tasks with high efficiency.
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