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Abstract. In previous work [1, 2], we studied the linearized gravity with covariant gaugeβ = 2/3 andα = 5/3. It
was found that the sum of the source and initial contributions reproduces the correct field configuration over the whole
de Sitter spacetime. In this paper, we extend this work to generalizing the linearized gravitational field in an arbitrary
value of the gauge parameterα but the gauge parameterβ remains the same.
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INTRODUCTION

De Sitter spacetime describes an inflationary phase of
the very early universe after the Big-Bang singularity [3].
(See, e.g., [4–6] for early discussion on this subject). It
is considered as a model of empty space universe with
spatially flat section in which the dynamic of the uni-
verse is governed by the cosmological constant, which
is thought to be dark energy in our universe. The recent
observational data is strongly in favor to the universe at
present may undergo a de Sitter phase of expansion [7, 8].
Mathematically, de Sitter spacetime can be constructed as
a 4–dimensional one-sheeted hyperboloid(R4,gab) em-
bedded in a 5–dimensional flat space(R5,ηµν) [3],

−(X0)2+
4

∑
i=1

(Xi)2 =
1

H2 , (1)

where the Hubble constantH determines the expan-
sion rate of the spatial section. The metricηµν and
gab correspond to the 5–dimensional ambient space and
4–spacetime intrinsic coordinates in the de Sitter hy-
perboloid, respectively, where the Greek indicesµ,ν =
0, · · · ,4 and the lowercase Latin indicesa,b = 0, · · · ,3.
This surface is related to the 10 parameters isometry
group SO(4,1). Thus, de Sitter spacetime is a maximally
symmetric 4–dimensional homogeneous and isotropic
space that gives the solution of the vacuum Einstein field
equation with positive cosmological constantΛ = 3H2,

Rab−
1
2

Rgab+3H2gab= 0, (2)

whereRab andR are the corresponding Ricci tensor and
Ricci scalar, respectively.

It has been a controversy that the field coming from
a charge following a geodesic only fills the space of the
union of the charge’s future lightcone in the future event
horizon, and thus violates the Gauss’s Law because there
are region such that the flux at sufficiently large sphere
around the charge vanishes, e.g., in the region of the past
event horizon of the charge [9–12]. This is due to the
spacelike nature of past infinity of de Sitter spacetime
that casts doubt to the validity of the usage of the covari-
ant retarded Green’s function to act as a tool to generate
the field causally from a source. This paradox can be
resolved by including not only the source term but also
the initial data on the Cauchy hypersurface at infinite past
when calculating the field configuration using retarded
Green’s function [1, 2, 13]. Therefore the field is cor-
rectly reproduced to satisfy Gauss’s Law at any instance
of time over the Cauchy hypersurface.

In previous work [1] we show the correct field config-
uration is reproduced from the sums of source term along
its geodesic and initial data at past infinity using retarded
Green’s function with the gauge condition

∇ahab− 5
2

∇bh= 0, (3)

and the gauge parameterα= 5/3. In this paper we extend
the work for linearized gravity by generalizing the field
with the gauge parameterα arbitrary. The remainder of
the paper is organized as follows. We briefly introduce
and recall some essential facts concerning the structure
of de Sitter space as a preliminary in the next section.
We then formulate the retarded Green’s function by gen-
eralizing the field in a one-parameter family of covari-
ant gaugeα in addition to the one with gauge fixed at



α = 5/3, which will be the subject of this paper, in the
following of next section. In the final section we summa-
rize this paper. We use natural units ¯h = c = 16πG= 1
and the metric signature(−+++) throughout this paper.

DE SITTER SPACE

In de Sitter spacetime, the choice of the vacuum state
is not unique in general due to lacking of global timelike
Killing vector field [14],Ka, satisfying

∇(aKb) = 0. (4)

However, we can find a coordinate system due to high
symmetry of this spacetime in which the spacetime is
static, i.e., the metric is time-independence. In such a
coordinate system a natural vacuum state exists for the
scalar field theory, called the Euclidean or Bunch-Davies
vacuum state [15]. This static form can be constructed if
the parametrization is taken as

X0 =
√

H−2−R2sinhHT , (5)

X1 =
√

H−2−R2coshHT , (6)

X2 = Rcosθ , (7)

X3 = Rsinθcosφ , (8)

X4 = Rsinθsinφ , (9)

whereT ∈ (−∞,∞), R∈ [0,H−1), θ ∈ [0,π], φ ∈ [0,2π).
The corresponding form of the metric is

ds2 =−(1−H2R2)dT2+(1−H2R2)−1dR2+R2dΩ2 ,
(10)

wheredΩ2 is the metric of unit 2-sphere, i.e.,

dΩ2 = dθ2+ sin2 θdφ2 . (11)

This coordinate system covers only the quarter of the
whole manifold of de Sitter space as illustrated in the
region labeled as I in fig. (1). At any instant of time
the origin1 (North Pole) of the spatial section lies along
the vertical right edge atR= 0 and the coordinate time
T increases from−∞ to +∞ towards the future. Due
to the metric is time independence, this coordinate sys-
tem admits a future directed timelike Killing vector field
(∂/∂T)a. Notice that the vertical hyperboloidal curve
(R= constant) with arrow pointing upward is the inte-
gral curves of the timelike Killing vectorKa = (∂/∂T)a.
In this expanding quarter of de Sitter space, the radiusR
can be extended to the null hypersurface,R=H−1, which

1 Without loss of generality, the origin can be taken to be any point of
de Sitter space.
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FIGURE 1. The Carter-Penrose diagram for static coordinate
system of de Sitter spacetime. Each point in this diagram repre-
sents a 2-sphere spanned byθ,φ. TheI − andI + represent the
past and future infinity. These conformal infinities are spacelike
in nature.

we called the cosmological horizon of the de Sitter uni-
verse. It is possible to extend the coverage beyond the
limit R= H−1 by the coordinate chart of Eqs. (5) and
(6) with the factor

√
H−2−R2 replaced by−

√
H−2− R̄2.

This chart covers the region II in fig. (1) wherēR is the
radius originated from the antipodal2 origin (South Pole)
of the spatial section lying along the vertical left edge
(R̄= 0) and the coordinate timeT increases from−∞ to
+∞ towards the past. In this region, the vertical hyper-
boloidal curve (̄R= constant) with arrow pointing down-
ward is the integral curves of the timelike Killing vector
field, i.e., this region contains the past directed timelike
Killing vector field.

The spacelike hypersurface,Σ, is a 3-sphere of con-
stant time (T = constant) evolves along the way whose
normal vector coincides with the future directed Killing
vector in region I and past directed Killing vector in re-
gion II as depicted in fig. (1) when the common coordi-
nate timeT runs from negative infinity to positive infin-
ity. If a point massM is placed at the North Pole, one
must find a point massM exists in the South Pole on the
hypersurfaceΣ. This is related to the fact that the total
conserved charge corresponding to a de Sitter boost sym-
metry must vanish [16, 17], i.e., the stress-energy tensor
Tab must satisfy

∫
Σ

dΣaTabK
b = 0, (12)

2 Given a pointx located by theXµ(x), an antipodal point is a point ¯x
located by the−Xµ(x̄), soXµ(x) =−Xµ(x).



where the integration is performed over the spatial hyper-
surfaceΣ in which dΣa = dΣ× ta, whereta is the future
directed timelike unit vector normal to the surfaceΣ.

GAUGE GENERALIZATION IN THE
GRAVITATIONAL FIELD

The Lagrangian density describing the massless spin–
2 field of pure gravity with a positive cosmological con-
stant is given by

L full =
√
−g̃(R̃−2Λ) , (13)

whereg̃= detg̃ab is the determinant of the full metric and
R̃ is the corresponding Ricci scalar. When a small pertur-
bationhab in the background metricgab is introduced, the
full metric can be written as ˜gab= gab+hab. We have for
linearized gravity, by expanding the Lagrangian density
to second order inhab, can be expressed in the form

L
(2)+Lgf = 1

2

√−g
{
(T + Tgf)

abcde f∇ahbc∇dhe f

+S abcdH2habhcd

}
, (14)

where(T + Tgf)
abcde f and S abcd are tensors formed by

the metrics, andLgf ∝ Tgf
abcde f is the Lagrangian den-

sity contributed by the gauge fixing term (as referred to
Eq. (3)). Then, the conjugate momentum current is given
by

πabc= (T + Tgf)
a(bc)de f∇dhe f . (15)

We note that the conjugate momentum current is a gauge
invariant quantity. The covariant graviton propagator
Qaba′b′(x,x

′) satisfying the equation of motion operator
[
(T + Tgf)

cabde f∇c∇d −H2Sabe f
]
Qe f a′b′(x,x

′)

= δab
a′b′(x,x

′) , (16)

was obtained in [18] for the gaugeβ = 2/3, where the
scalar sector does not increase with distance. The re-
tarded Green’s function is found as the difference of the
values of the propagators between two points to its an-
tipodal points counterpart. In the rest of this paper we
drop the argument in the equation for simplicity. It is
easy to restore the argument from a given tensor as the
unprimed index refers to the point atx and the primed
index refers to the point atx′.

Let us consider the gravitational fieldhab coupled to
the stress-energy tensorTab. The field in the future do-
main of dependence of the Cauchy surfaceΣ, denoted by
D+(Σ), is given in terms of the retarded Green’s function
as [1, 2]

hab= h(S)ab +h(I)ab , (17)

whereh(S)ab is called the source field (the field generated
by the source)

h(S)ab =

∫
D+(Σ)

d4x′
√
−g′Gaba′b′T

a′b′ , (18)

andh(I)ab is called the initial field (the field generated by
the initial surface)

h(I)ab =

∫
Σ

dΣc′
[
πc′a′b′Gaba′b′ − (LπG)ab

c′a′b′ha′b′
]
. (19)

Here,g′ is the determinant of the metric atx′ and

(LπG)ab
c′a′b′ = (T + Tgf)

c′(a′b′)d′e′ f ′∇d′Gabe′ f ′ . (20)

The fieldha′b′ and the corresponding conjugate momen-
tum currentπc′a′b′ adopted at infinite past surfaceΣ is the
input field identical to the field reproduced in de Sitter
space. This is because the initial surface is required to
satisfy the Gauss Law in the first place.

In [1] we adopted the gaugeα = 5/3 in calculating
the field given by Eq. (17). In the rest of this section we
restore the gaugeα in the field in addition to the field at
α = 5/3. As was found in [18] that the coefficients of
each bi-tensor term is proportional to∑i(Ai +Biα) fi(z),
whereAi andBi are arbitrary constants. Now, the constant
coefficients can be written as

Ai +Biα =

(
Ai +

5
3

Bi

)
− 5

3
Bi

(
1− 3α

5

)
. (21)

We see that the first term on the RHS is the coefficient at
which the gaugeα = 5/3 is used. In a similar manner,
the retarded Green’s function can be written as

Gaba′b′ = Gaba′b′

∣∣∣
α=5/3

+

(
1− 3α

5

)
G̃aba′b′ , (22)

where
G̃aba′b′ = Gaba′b′

∣∣∣
α=−5/3,∀Ai=0

. (23)

The coefficients of the operatorLπ take the formAi +
Biα−1, and similarly the operator can be written as

Lπ = Lπ

∣∣∣
α=5/3

+

(
1− 5

3α

)
L̃π , (24)

where
L̃π = Lπ

∣∣∣
α=−5/3,∀Ai=0

. (25)

Thus, the second term of initial field in Eq. (19) reads

(LπG)ab
a′b′c′

= (LπG)ab
a′b′c′

∣∣∣
α=5/3

+

(
1− 3α

5

)
(LπG̃)ab

a′b′c′

+

(
1− 5

3α

)(
L̃πG

∣∣∣
α=5/3

)

ab
a′b′c′

. (26)



Using the fact thatG|α=5/3+ G̃= G|α=0 and
(

∇a′Gab
a′b′ − 5

2
∇b′Gab

)∣∣∣∣
α=0

= 0, (27)

we find that

(LπG)ab
c′a′b′ = (LπG)ab

c′a′b′
∣∣∣
α=5/3

+

(
1− 3α

5

)(
Lπ

∣∣
α→∞G̃

)
ab

c′a′b′ .

(28)

Thus, we have for the gravitational field

hab= hab

∣∣∣
α=5/3

+

(
1− 3α

5

)(
h̃(S)ab + h̃(I)ab

)
, (29)

where

h̃(S)ab =

∫
D+(Σ)

d4x′
√
−g′G̃aba′b′T

a′b′ , (30)

h̃(I)ab =
∫

Σ
dΣc′

[
πc′a′b′G̃aba′b′

−
(

Lπ
∣∣
α→∞G̃

)
ab

c′a′b′ha′b′
]
. (31)

We note that the equations above areα invariant. In view
of the constant coefficient defining the Eqs. (23), (29) and
(30) imply that the correct fieldhab to be produced by the
source is given by

h(S)ab = h(S)ab

∣∣∣
α=0

− 3α
5

h̃(S)ab . (32)

This show that the extra term (the second term on the
RHS of the equation above), which does not satisfy the
gauge condition (3), possessed in the source field is a pure
gauge field when theα is restored. The first term in this
equation is identical to the input field at the initial surface.
The initial field can be generalized to

h(I)ab = h(I)abθ(∆χ−∆τ)+
3α
5

h(I)ab

∣∣∣
α=5/3

θ(∆τ−∆χ) , (33)

whereθ(X−Y) is the Heaviside step function, i.e.,θ(X−
Y) = 1 if X ≥ Y, otherwise vanishes. The first term on
the RHS of the initial field, which isα invariant, is pro-
duced in the causal past of the point mass and the second
term, which has an overall gauge factor, is produced in
the causal future of the same mass. This second term
canceled exactly with the extra term from the source field
in the causal future of the point mass.

CONCLUSIONS

In this paper, we generalize the gravitational field pro-
duced by the source term and the initial surface in the co-
variant gaugeα in de Sitter spacetime. In addition to the

field at the fixed gauge, a term arose proportional to the
α at which this term will vanish when the gaugeα = 5/3
is applied. The extra terms arising in the field that dif-
fer from the correct field is a pure gauge field. This field
cancels the initial contribution in the causal future of the
point mass along the geodesic. Thus, the sumh(S)ab +h(I)ab
is α independent and Eq. (17) reproduces the correct field
configuration over the whole de Sitter spacetime.

ACKNOWLEDGMENTS

This work has been supported by STIRF grant (Code
No. 78/10.11) from Universiti Teknologi Petronas.

REFERENCES

1. A. Higuchi and Y. C. Lee, Phys. Rev. D78 (2008) 084031
2. A. Higuchi, Y. C. Lee and J. R. Nicholas, Phys. Rev. D80

(2009) 107502
3. S. W. Hawking and G. F. R. Ellis,Cambridge University

Press, Cambridge, 1973
4. A. H. Guth, Phys. Rev. D23 (1981) 347.
5. A. D. Linde, Phys. Lett. B108 (1982) 389.
6. A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett.48 (1982)

1220.
7. A. G. Riesset al. [Supernova Search Team Collaboration],

Astron. J.116 (1998) 1009
8. S. Perlmutteret al. [Supernova Cosmology Project Collab-

oration], Astrophys. J.517 (1999) 565
9. R. P. Woodard, gr-qc/0408002.

10. S. -P. Miao and R. P. Woodard, Class. Quant. Grav.23
(2006) 1721

11. I. Antoniadis, J. Iliopoulos and T. N. Tomaras, Phys. Rev.
Lett. 56 (1986) 1319.

12. I. Antoniadis and E. Mottola, J. Math. Phys.32 (1991)
1037.

13. J. Bicak and P. Krtous, Phys. Rev. D64 (2001) 124020
14. N. D. Birrell and P. C. W. Davies,Cambridge, Uk: Univ.

Pr. ( 1982) 340p
15. G. W. Gibbons and S. W. Hawking, Phys. Rev. D15 (1977)

2738.
16. S. Deser and D. Brill, Commun. Math. Phys.32 (1973)

291.
17. A. E. Fischer and J. E. Marsden, Bull. Amer. Math. Soc.

79, 997 (1973).
18. A. Higuchi and S. S. Kouris, Class. Quant. Grav.18 (2001)

4317


