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Abstract: This paper presents an overview of LULU operators and discrete pulse transform

(DPT). Data extraction from signals and images is a popular area of research. Different

methods are being used for data extraction such as different types of linear and nonlinear

operators. LULU operator is one of the most important rank selector nonlinear filters used for

data analysis which is widely being used for signal analysis, especially in impulse noise filtering.

It is computationally more efficient and the behaviour of the operator is simple to describe.

Based on the composition of different orders of LULU operators, DPT on multi-resolution is

defined, which describes the sequences into pulses with different magnitudes. DPT allows a

multi-resolution measure of roughness of images and sequences. It is a powerful technique for

image analysis and can also be used for the estimation of standard deviation of a random

distribution.
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1 INTRODUCTION

In signal and image processing techniques, we come

across many challenges analysing the data and

recovering the original data from the noise corrupted

ones. Sometimes, we look for a specific property or

part of data within an image or any signal sequence.

This analysis is performed using many different

methods, including both, linear and nonlinear me-

thods. Linear filters are good smoothers that respond

well to data with Gaussian noise. However, their per-

formance degrades for data with impulse noise. Mean-

while, nonlinear methods deal with discontinuities or

large impulses, which relatively provide better results.

In this paper, we focus on LULU which is one of the

nonlinear methods.

Rohwer and Toerien in the late 1980s introduced a

novel, innovative nonlinear smoother, named LULU

smoothers, based on extreme order statistics.1 LULU

operators remove impulse noise before a signal is

extracted from a sequence. They are computationally

convenient and conceptually simpler compared to the

median smoothers which are usually considered to be

basic smoothers. LULU operators have particular

properties, e.g. they are fully trend preserving, preserve

the total variation, etc., which make them an essential

tool for multi-resolution analysis of sequences.

Furthermore, it was demonstrated during the last

decade or so that these operators were specific cases

of morphological filter. They have a critical role in

the analysis and comparison of nonlinear smoothers
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[an operator A is a smoother if AE5EA where

Exi5xiz1; A(xzb)5Axzb for all constant sequences

b; and A(cx)5c(Ax) for all scalars for c>0].2

The other application of LULU smoothers is in

applying discrete pulse transform (DPT) to images.

DPT is a new and strong method for the analysis of

signals and can be extended to images by using

LULU operators. While DPT decomposes the image

into different pulses, it can be used to extract the

specific objects in the image by selecting the appro-

priate pulses. Furthermore, DPT is being used in the

estimation of standard deviation of a random

distribution.3

A multi-resolution analysis of a space consists of a

sequence of nested subspaces that satisfies certain

self-similarity relations in time/space and scale/

frequency, as well as completeness and regularity

relations. DPT and wavelet are two of the most

important multi-resolution analysis methods. The

properties of multi-resolution analysis are described

in more details in Refs. 4 and 5.

In this paper, first, we explain LULU operators

and then discuss their properties. Next, we will

discuss the main concept of DPT and then, different

applications of signals and images will be discussed

which have the potential to be addressed by LULU

and DPT.

2 LULU OPERATORS

LULU operators are called MaxMin and MinMax

filters due to their characters. They are local and

nonlinear operators used for the removal of impulse

noise. LULU operators consist of the sub-operators

L (low) and U (upper) with different orders for

different filters.

For one-dimensional (1D) analysis of the se-

quences of signal, noise removal can be done via LU

or UL operators. These operators remove the

positive and negative peaks which have small width

similar to impulse noise. The result of LU and UL

operators is a local and monotone (the sequence j is

n-monotone if either j (jiz1(…(jizn(jiznz1

or ji>jiz1>…>jizn>jiznz1, for all values of i,

such ji and jiznz1 are both members of the

sequence2) sequence without any detectable noise,

and the 1D LULU operators fulfil the idempotent

condition (A is idempotent if A25A and co-

idempotent if I2A is idempotent2). LULU opera-

tors are also used in two-dimensional (2D) analysis,

i.e. image analysis, for smoothing or filtering the

image and also for object detection and extraction

(by using DPT) with composition of different L and

U operators.

2.1 1D LULU

When LULU is being used for signals, it is similar to

a simple comparison method to remove the peaks.

Figure 1 illustrates the power of L and U operators in

filtering/smoothing the signal. In this figure, the top

one is the original signal, while the middle and the

bottom ones show the smoothed signals after

applying L and U operators, respectively. For a

given bi-infinite sequence, j5(ji), iMZ, the 1D LULU

operators are defined by equations (1) and (2), as

follows6

1 (a) Original signal; (b) result of L smoother on the signal; (c) result of U smoother on the signal
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(Lnj)i~

maxfminfji{n, . . . , jig,minfji,, . . . , jizngg, i[Z (1)

(Unj)i~

minfmaxfji{n, . . . , jig,maxfji, . . . , jizngg, i[Z (2)

2.2 2D LULU

When LULU smoothers are applied on a 2D array, it

shall compare any single element with all the

neighbours around it. The neighbourhood of a pixel

is definable in different ways such as the ones shown

in the Fig. 2.

To further elaborate the concept of 2D processing

using LULU operators, an example is provided. This

example illustrates one of the many different possible

neighbourhood and sub-neighbourhoods for a pixel.

LULU in 2D, similar to 1D LULU, can be extended

to neighbourhoods by considering more pixels

surrounding each pixel.

In this example, the neighbours of the pixel I(i,j) is

divided to four different regions as shown in

equations (3)–(6). Others possible neighbours are

not considered here

I1~½I(i,j{1), I(i,j), I(iz1,j{1), I(iz1,j)� (3)

I2~½I(i{1,j{1), I(i{1,j), I(i,j), I(i,j{1)� (4)

I3~½I(i,jz1), I(i,j), I(iz1,j), I(iz1,jz1)� (5)

I4~½I(i{1,jz1), I(i{1,j), I(i,j), I(i,jz1)� (6)

Figure 3 illustrates equations (3)–(6).

Then the L and U operators were applied as

follows

L(i,j)~max(min(I1),min(I2),min(I3),min(I4)) (7)

U(i,j)~min(max(I1),max(I2),max(I3),max(I4)) (8)

Figure 4a shows a randomly generated binary image

and Fig. 4b and c shows the smoothed images after

applying L and U smoothers. The L and U in

equations (7) and (8) are actually L3 and U3 because

of considering a neighbourhood of 4 pixels in each

region. In this example, the binary image has balanced

number of black and white parts. After applying L

smoother on the image, the black parts increased. That

can be described according to equation (7). L operator

maximises the minima of the neighbourhood which

actually removes the lower peaks (this is the reason that

Fig. 4b has more black spots than the original image).

U smoother is opposite to L smoothers. Therefore,

Fig. 4c is whiter compared to the original image.

3 PROPERTIES OF LULU OPERATORS

Some of the properties of LULU operators, as

introduced by Rohwer and Laurie, are listed in

Table 1. For detailed discussion of properties as well

3 Illustration of neighbours for equations (3)–(6): (a) I1;

(b) I2; (c) I3; (d) I42 Four different neighbouring regions of pixel (i,j)
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as their proofs, check Refs. 2 and 7. In Table 1, M

denotes the median, I denotes the identity operator,

and C and F are LULU operators which are called

ceiling (biased towards lower limits) and floor (biased

towards upper limits) operators, respectively.

4 THE DPT

DPT is a composition of different pulses, where a

pulse is a string of zero values which is non-zero for

few consecutive elements. DPT is naturally discrete

unlike discrete Fourier and wavelet transforms and

its results are better than the median transform

especially in terms of computational complexity.

DPT is very similar to DFT, except that DPT

separates the signal to positive and negative parts

(pulses) but DFT divides the signal to even and odd

parts.

In image processing, DPT is being used to separate

the objects in the image by identifying the pulses

corresponding to different objects in the image. For

4 (a) Original binary image; (b) result of L smoother on the image; (c) result of U smoother on the image

Table 1 Some of the properties of LULU operators

Property Comment

L(I(U I represents identity operator
L25L, U25U Repetition of same operator would not affect the result
L(M(U M denote the median operator
(LUL)25LUL, (ULU)25ULU22 Repetition of same operator would not affect the result
LUL(ULU22 LUL due to applying L operator twice in different orders make

the result smaller than ULU which applies the U operator more
(LU)25LU, (UL)25UL22 Repetition of same operator would not affect the result
Un (x)5Ln(x)5x ‘where x is a constant sequence and x MMn’
Ln(UnLn(Cn(Fn(LnUn(Un

2 ‘The Cn and Fn operators (ceiling and floor) are given by:
C05L0U05I5U0L05F0

Cnz15Lnz1Unz1Cn;
Fnz15Unz1Lnz1Fn’2

UnUk5Um and LnLk5Lm
2 where m5max{n, k}2

LnUn (and UnLn) are idempotent
and co-idempotent2

‘A is idempotent if A25A and co-idempotent if I - A

is idempotent, therefore they are separators’2

UnLn(Mn(LnUn
2 Mn denote the median operator of order n2

(Mn x)i5median{ xi-n,…, xi,…, xizn }
LnUn (and UnLn) are syntone operators2 An operator S is syntone if x.yRSx.Sy

2

LnUn (and UnLn) are ntp operators2 ‘An operator A is neighbour trend preserving (ntp)
if for each sequence x,
xi>xiz1R(Ax)i>(Ax)iz1

xi(xiz1R(Ax)i((Ax)iz1’2

LnUn (and UnLn) are ftp operators2 ‘An operator A is fully trend preserving (ftp) if A

is ntp and, |(Ax)i - (Ax)iz1 |(|xi - xiz1 |’2

Un and Ln are variation preserving A parameter expression that preserves orthonormality
under variation up to n order

The operators Ln and Un are duals
in that Un(-x)5-Ln(x)2

Negation property2

Un(xzc)5Unxzc (and Ln(xzc)5Lnxzc)
for any constant sequence c2

Constant Shift property2

Un(ax)5aUn(x) (and Ln(ax)5aLnx) for any a.02 Constant Multiple property2

Fn and Cn are separators2 ‘A smoother A is a separator if it is both
idempotent and co-idempotent’2
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processing images with DPT, we need to use the

LULU operators on multidimensional arrays. Sub-

images are constructed based on the disparity of

neighbouring pixels and DPT is based on capturing

the contrast in the original image on the boundary of

their supports. Detailed comparison of DFT and

DPT is provided by Rohwer and Laurie.2 The

summary of comparison between DPT and all

DFT, wavelet transform and median transform is

given in Table 2.

4.1 1D DPT

In general, DPT can map the bi-infinite sequences

such as j5(…, j21, j0, j1, j2, …) onto an infinite

vector

DPT(j)~(D1(j), D2(j), . . . ) (9)

where Dn(j) is a sequence consisting of a well-

separated discrete block pulses with the support n

(the set of non-zero values of a function is called the

function’s support).8

As shown in equation (9), DPT of a sequence is a

composition of DPT for different orders (pulses), and

we shall calculate D1, D2, …, Dn, one by one to be

able to reconstruct the signal. Dn is a sequence

consisting of block pulses with the support n, for

instance, it only compares the values of any position

with n before and n after, and removes the pulses with

width size n.

As an example for 1D DPT, consider a sequence of

j5{1, 2, 7}, which is shown in Fig. 5a. Following is

provided step by step explanation for processing this

sequence with 1D DPT. In this example, the calcula-

tion for all DPT decomposition for this sequence

which is D1, D2 and D3 has been shown. This signal has

only three elements; therefore, its DPT can be

calculated only up to three decompositions.

Step 1. First, we have to filter the signal with L1U1

operator. For calculating L1, we shall filter

the signal with L1 and remove all the

signal’s peaks with width of size one; Then

we apply U1 on the result to remove all the

valleys with width of size one. L1U1

smoothes the signal by removing all the

local maximum and minimum pulses of

width 1.

Step 1. Please note that, for processing boundary

elements and also maintaining the size of

the signal, we add zeros to the sequence.

For example, for calculating L1, because it

considers the neighbourhood with only one

element before and one after, we add one

zero to the beginning of j and one at the

end.

L1~f1, 2, 2g

5 DPT decomposition for 1D sequence: (a) original signal; (b) D1; (c) D2; (d) D3

Table 2 Comparison of DPT with other transforms

Property DFT

Wavelet

Transform

Median

Transform DPT

Multi-resolution ! ! ! !
Predictability ! ! !
Efficiency ! ! !
Locality ! ! !
Incisiveness ! !
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The first element of L1is 1 which is obtained

by using equation (1), i.e. min{ji21, ji}50

(since ji2150 and ji51), and min{ji,

jiz1}51 (since ji51 and jiz152), and then

max{min{ji21, ji},min{ji, jiz1}}i51. This

process is repeated for all elements of j.

Next, U1 operator is applied on the result of

L1 and the following result is obtained

L1U1~f1, 2, 2g

The first element of L1U1 is 1 which is

obtained by using equation (2) on the result

of L1, (here we represent the elements of

L1U1 by ‘x’), i.e., max{xi21, xi}51, also

max{xi,xiz1}52 and then min {max

{xi21,xi}, max{xi, xiz1}}i51 where xi51

in sequence L1.

Step 2. For calculating D1, we subtract the

smoothed signal L1U1 from the original

signal to get all peaks and valleys of size one

as shown in Fig. 5b.

D1~j{L1U1~f0, 0, 5g

Step 3. For calculating D2, we shall find the pulses

of width two, and for this reason, we need

to apply L2U2 operator on the result of step

one. It means that we applied L1U1L2U2

operator on the signal according to their

orders and we remove all the peaks and

valleys of the signal with widths one and

two. Please note that, we shall increase the

previous sequence’s size by adding two zeros

at the beginning and two at the end of it to

consider the L2 and U2 neighbourhood of

size two.

L1U1L2~f1, 0, 1g

The first element of L1U1L2 is 1 which is

obtained by using equation (1) on the result

of L1U1 (here we represent the elements of

L1U1L2 by ‘z’), i.e. min{zi22, zi21, zi}50,

min{zi, ziz1, ziz2}51 and then max{

min{zi22, zi21, zi}, min{zi, ziz1, ziz2}}i51

where ji51 in sequence L1U1. In the same

way, we calculate L1U1L2U2.

L1U1L2U2~f1, 1, 1g

Step 4. Here we need to subtract the result of Step 3

from original signal, to get all the pulses

with widths one and two.

j{L1U1L2U2~f0, 1, 6g

Step 5. The result of Step 4 gives us the peaks and

the valleys with widths one and two, but for

calculating D2, our concern is only to find

pulses with width two. Therefore, we shall

remove the width one pulses from the result

of last step by applying L1U1 filter on that.

(j{L1U1L2U2)L1~f0, 1, 1g

D2~(j{L1U1L2U2)L1U1~f0, 1, 1g

The result of D2 is shown in Fig. 5c.

Step 6. For calculating D3, we need to apply L3U3

and at the end, keep the pulses with width

three. Please note that, at this time for

calculating L3U3, we shall increase the

previous sequence’s size by adding three

zeros at the beginning and three at the end

of it to consider the L3 and U3 neighbour-

hood of size three.

L1U1L2U2L3~f0, 0, 0g

The first element of L1U1L2U2L3 is 0 which

is obtained by using equation (1) on the

result of L1U1L2U2 (here we represent the

elements of L1U1L2 by ‘w’), i.e. min{wi23,

wi22, wi21, wi}50, also min{wi, wiz1, wiz2,

wiz3}50 and then max{min{wi23, wi22,

wi21, wi}, min{wi, wiz1, wiz2, wiz3}}i50,

where wi51 in sequence L1U1L2U2. In the

same way, we calculate L1U1L2U2L3U3.

L1U1L2U2L3U3~f0, 0, 0g

Step 7. By reducing the filtered sequence with

L1U1L2U2L3U3 from the original one, we

can sift all the peaks and valleys remaining

from the L1U1L2U2L3U3 filter.

j{L1U1L2U2L3U3~f1, 2, 7g

Step 8. This step is similar to Step 5. The difference is

that we need to filter with L2U2 L1U1 to take

all the pulses with width less than three out.

(j{L1U1L2U2L3U3)L2~f1, 0, 1g

(j{L1U1L2U2L3U3)L2U2~f1, 1, 1g

(j{L1U1L2U2L3U3)L2U2L1~f1, 1, 1g
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D3~(j {L1U1L2U2L3U3)L2U2L1U1

~f1, 1, 1g

The result of D3 is shown in Fig. 5d.

Step 9. In this step, we want to show that after

summing all the DPT decompositions for

different pulses, we can get the sequence j

again.

D1zD2zD3~f1, 2, 7g

We can extend the work from 1D sequences

to the multi-dimensional arrays, namely,

functions on Zd (d.1). The notation Zd

refers to an n-dimensional space with

integer coordinates; for example, a value

of Z3 consists of three integer numbers and

specifies a location in three-dimensional

(3D) space.9

4.2 2D DPT

A(Z2) denotes the set of all functions with limited

support defined on Z2. A greyscale image is a

function fMA(Z2) such that the support of f is a finite

rectangular subset V of Z2. The DPT of a function

fMA(Z2) is a vector of the form10

6 DPT decomposition for 2D

7 2D DPT for four-connectivity
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DPT(f )~ D1(f ),D2(f ), . . . , DN(f )½ � (10)

which is finite due to the finite support of f. In the

equation above, N represents pixels in the image.

DN(f) is given as

Dn(f )~
Xr(n)

s~1

Qns

where Qns represents the pulses. The functions Qns51,

2, …, c(n), where c(n) is a function of n, affecting the

number of pulses of each pixel. These functions are

discrete pulses with support of size n, n51, 2, …, c(n).

In this context, a discrete pulse is a function QMA(Z2)

which is constant on a connected set W and zero

elsewhere. The set W is called the support of the pulse

Q, W5supp(Q). The value of Q on W is called the

value of the pulse. If the value of Q is positive, then Q

is an up-pulse; if it is negative, Q is a down-pulse.

Using DPT, we represent the function fMA(Z2) as a

sum of pulses.10

f ~
XN

n~1

Dn(f )~
XN

n~1

Xc(n)

s~1

Qns (11)

Furthermore, similar to the DPT of sequences, the

decomposition above preserves the total variation

(TV), a parameter expression that preserves ortho-

normality under variation up to order n, of f as

TV(f )~
XN

n~1

TV Dn(f )½ �~
XN

n~1

Xc(n)

s~1

TV Qnsð Þ (12)

The TV is an important characteristic of an image. It has

been successfully used in noise removal procedures.11,12

The equalities show that the decomposition in equa-

tion (11) does not generate noise. The pulses in

equation (11) also have a more direct meaning. The

contrast in the original image at the boundary of the

support of any pulse is at least as much as the value of

that pulse.10

The DPT for a function fMA(Z2) is obtained via

iterative application of the operators Ln and Un with

n increasing from 1 to N. For a given n, the

sequencing of Ln and Un does not affect the proper-

ties stated earlier. However, it introduces bias

towards up-pulses or down-pulses. Let Pn denote

either the composition Ln+Un (for combining L and

U, we apply opening operators; in mathematical

8 2D DPT for eight-connectivity
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morphology, opening is the dilation of the erosion

of a set A by a structuring element B:A+B5

(A[B)›B)13 or the composition Un+Ln and let

Qn5Pn+Pn21+…+P2+P1. In the general theory of

mathematical morphology, Qn is known as an

alternating sequential filter (an alternating sequential

filter is an iterative application of openings and

closings with structuring elements of different sizes14).

However, here we are interested in the portions of

the image which are filtered out by the application of

Pn, n51, 2, …, N. We ultimately obtain QN(f), which

is a constant function containing no information

about the original image, except possibly the general

level of illumination. The rest of the informa-

tion carried by f is in the layers peeled off,10 i.e.

the number of pulses which are considered. More

precisely

f ~(id{P1)(f )z (id{P2)0Q1½ �(f )z

(id{P3)0Q2½ �(f )z . . . z id{PN{1ð Þ0QN{2½ �(f )z

(id{PN)0QN{1½ �(f )zQN(f ) (13)

where id denotes the identity operator. Let us note

that a similar iterative application of area opening

and area closing operators is used by Acton and

Mukherjee15 for image classification. Filtering is done

for selected values of n and instead of the layers of

peeled off portions, the authors keep a record of

filtered images at every scale. This would be Qn(f) in

the notation adopted here.16 For more information,

please refer to Refs. 10, 16 and 17.

DPT for 2D considers a wider neighbourhood for

each pixel compared to 1D. Besides, the size of

support can vary up to the matrix’s size. An example

for 2D DPT is provided here, which shows the effects

of different pulses on the image. The following steps

show the DPT decomposition for the image with the

pixel values illustrated in Fig. 6.

Please note that we can consider a different

neighbourhood, but here we just illustrated the result

of the four-connectivity and eight-connectivity neigh-

bourhoods as shown in Figs. 7 and 8, respectively. 2D

DPT is concerned about connectivity for calculating

9 Impulse noise removal of the Lena’s image with different LULU operators
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different decompositions; we shall follow the steps

below. The properties of connectivity and segmenta-

tion are described in more detail in Refs. 18 and 19.

Step 1. The first step is finding the local maximum

sets. For this, we shall find the connected

sets. For example, to calculate D1, we can

consider all the pixels one by one because

each one makes a set of size one. For any Dn,

any n pixels with the same value that are

connected can be considered as one set of size

n. Any set which has a higher value than its

neighbours will be highlighted and its value

will be changed to its neighbour values.

Step 2. This step is the same as the first step; the

difference is that we are looking for local

minimum sets on the result of the previous

step. After finding the local minimum sets,

we convert the whole set’s value to its

neighbour values and continue with the next

decomposition (Dnz1), which shall repeat

Step 1 followed by Step 2 for the result of Dn.

Step 3. The last step is when all values of the image

become the same. This will be the point

when we shall stop.

5 APPLICATIONS

As mentioned earlier, LULU is being used in 1D

array as well as in 2D arrays. The following provides

some of the applications of LULU operators and

DPT.

5.1 Filtering

For 1D sequence, LULU operators are being used as

smoothers or filters, which help to remove the peaks

and pulses that have a small width. Depending on the

application, various operators can be used and the

result of each operator is different from the others.

Usually, all these LULU operators are being used for

discrete data. Anguelov20 extended it to continuous

10 Impulse noise removal of the Cameraman’s image with different LULU operators
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time data. In Refs. 6 and 7, LULU operators are

compared and discussed for 1D filtering.

5.2 Statistics

LULU smoothers can be used in the analysis of

financial data. They have also been used in econo-

metrical and statistical literature. The usefulness of

these operators can be understood better in the case

of distributions with high kurtosis, distributions that

are very common in the financial risk environment as

well as in distributions with fat tails on one side like

the gamma distribution.21 LULU smoothers are still

not very well known in this field. Simulations have

been performed for financial data analysis.

5.3 Noise reduction in images

Reducing noise is one of the most important

requirements in image processing because of the

loss of information that results when an image is

corrupted by noise. There are many different types

of noise, but usually images are affected by impulse

noise whose major source is atmosphere. Usually,

median filters are used to remove impulse noise due

to simplicity but Kao22 used the LULU operators

for preserving the image details. He offered parallel

smoothing with two sub-operators, L and U. Any

of these two properties can be applied first and

then followed by the other, which uses morpholo-

gical opening function. As more operators are

applied on the noisy image, the image becomes

smoother and less noisy. Filtering can be stopped

according to some metric measure, for example,

comparing the value of the smoothed pixel with its

original value using mean square error. If the

image gets too smooth, some detailed information

may be removed from the image which may not be

noise.

The result of applying different LULU operators

on a noisy image with impulse noise is shown in

Fig. 9. In Fig. 9, the first image shows the noisy

image, the second is the image after being filtered

11 Gaussian noise removal of the Baboon’s image with different LULU operators
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with Median filter and the other images are showing

the result of L, U, LU, UL, LUL, ULU, LULU and

ULUL, respectively. The figure shows that by

applying more LULU operators, there is significant

reduction in impulse noise. At first when only L or

U operators are applied, L removes more white

points of impulse noise and U removes more black

points. LU smoother applies L first and then U and

it helps to remove more noise than a single

operator; this procedure can be continued till we

get our desired result. Figure 10, shows the same

result as Fig. 9 on different image with different

noise densities.

Figure 11 shows the comparison of LULU filters

and Wiener filter for Gaussian noise removal. The

Wiener filter is performing better than LULU filters

for Gaussian noise removal due to its characteristic

which matches this type of noise behaviour, but for

LULU filters, since they are locally operators, their

performance is not as good as Wiener filter.

5.4 Object detection

A very useful application of the discrete pulse decom-

position is via partial reconstructions of images. This is

a new approach in object detection. LULU operators

enable DPT decomposition to be applied to images and

remove some undesirable parts of the image or extract

desirable object from image. As mentioned earlier in

DPT properties, each image will be reconstructed from

pulses with different sizes. Playing with the number of

these pulses can remove the unnecessary parts of the

image or extract object of interest.

In Refs. 8, 10 and 23, the authors worked on object

detection and object removal in an image. Figure 12

shows the application of DPT on ‘Mouse’ image. As

shown in the figure, when the number of pulses is larger,

more parts of the image are visible and when it is

restricted to a small interval, then we can only view few

parts. By applying different ranges of pulses, we can

extract the desired information from the image that is of

interest. Figure 13 illustrated the concept of DPT with

different pulses for an image of a cameraman of people.

Table 3 shows the computational complexity with

various pulses. As shown in the table, the computa-

tional times for different pulses are independent of

the number of pulses. This can be explained accord-

ing to the concept of support.

6 RECOMMENDATION AND CONCLUSION

In this paper, LULU operators and the concept of

DPT based on LULU operators were discussed.

12 Results of different ranges of pulses in DPT of an image
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These two methods are implemented for 1D

sequences as well as 2D arrays (images) for different

applications. They appear to perform better com-

pared to other methods. Table 2 illustrates the

comparison of DPT with other methods. LULU is

already being used widely in filtering and smoothing

operations, especially in econometrical and statistical

literature. Now, many researchers employ LULU

and DPT for image analysis too. DPT is a very

efficient operator for multi-dimensional arrays unlike

median operator. It is one of the best filtering

methods for removing impulse noise from images as

well as 1D sequences. Currently, it is being used for

edge deduction and contour tracing for object

detection and object extraction applications. The

next step is to use DPT for 3D applications, i.e. depth

map estimation, 3D shape extraction, etc.
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