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Abstract. A Brain-Computer Interface (BCI) is a hardware/software based system that translates 
the Electroencephalogram (EEG) signals produced by the brain activity to control computers and 
other external devices. In this paper, we will present a non-invasive BCI system that reads the 
EEG signals from a trained brain activity using a neuro-signal acquisition headset and translates 
it into computer readable form; to control the motion of a robot. The robot performs the actions 
that are instructed to it in real time. We have used the cognitive states like Push, Pull to control 
the motion of the robot. The sensitivity and specificity of the system is above 90 percent. 
Subjective results show a mixed trend of the difficulty level of the training activities. The 
quantitative EEG data analysis complements the subjective results. This technology may become 
very useful for the rehabilitation of disabled and elderly people.   

Keywords: Brain computer interface, EEG, robot. 

INTRODUCTION 

BCI is a field of biomedical signal processing, where signals are acquired and 
processed to operate devices. BCI gives alternative ways of communication between a 
user’s brain and the environment, thus enabling people to control objects by their 
thoughts without any physical contact [1]. Since BCI does not need any physical 
movement, it might be the only communication system for disabled people who might 
not be able to speak or use other physical interface devices. Simple activities like, 
writing your email by simply thinking or able to maneuver your wheel chair without 
any help may be very useful to many people. For ordinary users BCI based games are 
gaining popularity, while other groups are using BCI for remote access, spying, and 
smart homes, etc. [2]-[5].  

Electroencephalography (EEG) signals are created by the activity of neurons in the 
brain. The pattern of the EEG signals, correspond to the thoughts, emotions and 
behavior of an individual [6]-[8]. Human brain can produce five major brain waves, 
classified by their frequency ranges, known as Brain Rhythms. These major waves 
range from low frequency (0.5 Hz) to high frequency (100 Hz). These are known as 
delta (�) (0 – 4 Hz), theta (�) (4 – 8 Hz), alpha (�) (8 – 13 Hz), beta (�) (13 – 30 Hz), 
and gamma (�) (30 – 100 Hz) waves [7]. 
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Electrodes are placed over the scalp to acquire brain signals according to the 
international 10-20 system as shown in Figure 1 (a). The most common method of 
EEG signal recording from the brain is bipolar recording. Bipolar recording measures 
the potential difference between adjacent scalp electrodes. In advanced research or 
neural laboratories, often 64 to 131 recording electrodes are used to get more detailed 
data. However, an addition of electrodes may have less useful data unless that is 
supplemented by computer algorithms to manage the raw EEG data [9]. In some 
applications such as BCI, often a minimal number of electrodes (usually 14 recording 
electrodes as in Emotive EPOCH (Fig. 1(b)) are used and placed at movement related 
area in which the signals are strong using the conventional electrode positioning 
system. 

 
(a)                                                                               (b) 

FIGURE 1.  (a)The international 10-20 system or conventional electrode positioning, (b) Emotive 
EPOCH electrode positioning 

 
In Fig. 1 (a) that shows the international 10-20 system, each site has a letter to 

identify the lobe and a number to identify the hemisphere location. The letters F, T, C, 
P and O stand for frontal, temporal, central, parietal, and occipital lobes, respectively. 
However note that there exists no central lobe; the "C" letter is used only for 
identification purposes. A "z" (zero) refers to an electrode placed on the midline. Even 
numbers (2, 4, 6, 8) refer to electrode positions on the right hemisphere, whereas odd 
numbers (1, 3, 5, 7) refer to those on the left hemisphere. The letter codes A, Pg and 
Fp, identify the earlobes, nasopharyngeal and frontal polar sites respectively. Figure 1 
(b) shows the Emotiv headset that is equipped with 14 saline sensors: AF3, AF4, F3, 
F4, F7, F8, FC5, FC6, P7, P8, T7, T8, O1, O2 and two additional sensors CMS/DRL 
that serve as reference channels. 

In this paper, we focus on the EEG signals produced by the brain electrical activity 
to control a robot. We are using a non-invasive device known as Emotiv EPOC 
headset [10] to capture EEG signals that are used to control the movements of a 
Mindstorm NXT robot. The EEG signals are transmitted via bluetooth to the interface 
computer. These signals are read by the software and are analyzed and interpreted for 
further action. Based on the interpretation, a message is sent to the NXT robot via 
bluetooth to perform the specified action. 
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The rest of the paper is arranged as follows. In the next section we will provide an 
overview of the brain computer interface system. After that we will discuss the 
methodology adopted for training and testing. Later experimental results will be 
discussed followed by conclusion and references. 

SYSTEM OVERVIEW 

Figure 2 shows the block diagram of the proposed BCI system. It has three main 
modules: 1) Non-invasive EEG acquisition system, 2) An output device that needs to 
be controlled i.e. a NXT Robot, 3) Computer Interface. 

 
FIGURE 2.  Block diagram of the proposed BCI System 

NON-INVASIVE EEG ACQUISITION SYSTEM 

The Emotiv EPOC is a neuro signal acquisition (EEG) and processing wireless 
headset that consists of 14 wet electrodes. It can detect/capture EEG signals [10] from 
the human brain. It is connected wirelessly through a USB dongle and provides 12 
hours of continuous service via a lithium battery. Emotiv EPOC’s sensor layout is 
planned carefully to gain optimum benefits for human machine interaction. Sensors 
are mostly located in the frontal cortex, so it is useful to detect upper face gestures and 
determine alpha waves while concentrating on the task. EPOC uses three built-in 
suites to determine the input signals. The user’s facial expressions are analyzed by the 
Expressiv suite, the user’s emotional state is interpreted by the Affectiv suite while the 
Cognitiv suite analyzes user’s intent to control a movement.  

Emotiv Software Development kit (SDK) comes with library and applications that 
allows the users to interpret the raw EEG signals and write a program to interface it 
with external devices without using the built in suites [10]. In this work, Cognitiv suite 
is used to evaluate the user’s brainwave activity, when the user intends to perform a 
distinct physical action or many actions on a virtual (training) and a real object 
(testing/application). 

Output device (NXT Robot) 

The Mindstorms NXT robot is a programmable robotic kit from Lego that enables 
the design and construction of a robot, and sends the command to the NXT Intelligent 
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Brick via bluetooth connection. This NXT robot will receive a series of instructions 
from human brain via an interface PC to perform an operation. Furthermore, it comes 
with motors and sensors for robot’s movement, and to detect any obstruction [11]. 

Computer Interface 

The interface between the Emotiv EPOC and Mindstorms NXT Robot is developed 
by writing a program in C++. We call this interface EmoNXT. This program receives 
instructions from Emotiv API (application program interface) whenever the user 
thinks of a cognitive action (that has already been trained). The instruction received is 
processed and the output command is sent to the NXT robot via the bluetooth serial 
connection. The robot then follows the commanded action. A unique user profile for 
each user is required to map the user’s brain-patterns. Figure 3 shows the block 
diagram of the interface between the EMOTIV and NXT robot.  

 

 
 

FIGURE 2.  Block diagram of interface between EMOTIV and NXT robot 
 

METHODOLOGY 

The main goal of this research is to design, develop and implement a BCI system to 
control the NXT robot using EEG signals. The project utilizes an Emotiv EPOC 
headset, associated SDK and NXT development software to control a NXT Robot 
using EEG signals. To interface the Emotiv headset and the NXT Robot, first, Emotiv 
EPOC headset will acquire the EEG signals and transmit these signals via bluetooth to 
the computer, which will then be read by the Emotiv SDK. The software interface will 
interpret the results and pass it to EmoNXT interface. The EmoNXT will instruct the 
robot to perform an action. 

The system function starts when the user thinks of a certain action (such as PUSH 
an object), then the Emotiv EPOC headset will receive the corresponding EEG signals 
and send it through the Emotiv EmoEngine to interpret and compare the data. This 
EmoEngine receives pre-processed EEG data and performs feature extraction and 
classification. The Emotiv detection system compares the trained EEG data with the 
current data from EmoEngine and translates it into EmoState. EmoNXT (interface 
software) receives input from EmoState and determines which action to perform. On 
the basis of which, a series of output commands/instructions are sent to NXT bricks 
via bluetooth COM port. This brick converts the input instruction from bluetooth and 
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controls the motor and sensors of the robot to perform the specific instructions such as 
move forward. This interface is illustrated in Fig. 3. 

Hence the whole process may be divided into two steps; the training session and the 
testing/applying session. The training session needs visualization of the activity. The 
EEG signals are recorded during each session. Each user is required to have his own 
unique user profile. 

Training Session 

Before any control process is initialized, the action needs to be trained by 
visualizing it. In the Cognitiv suite, an animation with a 3D cube is displayed on the 
control panel (GUI-graphical user interface). We have trained four actions, that is, 
pull, push, left and right that correspond to move forward, move backwards, turn left 
and turn right respectively.  

When the training session is complete, we can apply the trained action. When the 
system receives the signal from our visualization, it will compare the current signal 
with the recorded signal in order to perform any action on the cube. When the signal is 
matched with the visualization, the animated cube will be pushed, pulled, move left or 
move right according to our thoughts. After the virtual cube is well controlled, we can 
interface the recorded signal with the NXT Robot using EmoNXT. 

After the training section is complete, the user is ready to apply the cognitiv event. 
The user needs to relax and visualize the action that he wants to perform, for example 
Push. The EmoNXT platform upon receiving the signal will display “Cognitiv State: 
Push Event”, and “Robot movement: move forward”. This indicates the user is 
applying push event and as a result the robot will move forward by a single step. Other 
cognitive events will result in respective robot movements. 

EmoNXT (Emotiv Headset and Robot Interface) 

EmoNXT is an interactive tool that provides interface between the NXT robot and 
Emotiv headset. It is written in C++ language. It sends command to the NXT robot 
corresponding to the cognitive action intended. The details can be found in [12].  

The cognitive training is not very easy to control. It requires high relaxation and 
concentration level to control the movement of the animated cube. Therefore, a system 
that is trained by a different subject may not provide the expected performance when it 
is tested by another subject. For this purpose we have analysed the difficulty level of 
the virtual cognitive training and testing sessions using EEGlab, by calculating the 
average electrode power for each subject for cognitive training. We have also tried to 
correlate the EEG analysis with the subjective result of the difficulty level of the 
cognitive session obtained by asking the subjects to fill a questionnaire at the end of 
training/testing session. 

The whole process may be divided into two steps; the training session and the 
testing session, that can be on a virtual object and an actual object i.e. robot in our 
case. The training session needs visualization of the activity. After the system is well 
trained it will operate according to our visualization or imagination. The sequence of 
steps is as follows: 
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• Training the Cognitiv Suite: Each user has to make his user profile for EEG 
acquisition. The Cognitiv Suite is used to acquire the user brain signals to 
control the robot. It provides a Graphical User Interface (GUI) for training a 
virtual 3D cube. Table 1 lists down the actions trained and tested. 

• Actual motion control: After training, the robot is connected and actual testing 
is done on the robot to see the effect of cognitive training in real time, by 
thinking the same actions like pull, push etc. without the presence of the 3-D 
cube. 

In order to assess the system we will find the sensitivity and specificity of the brain 
computer interface that was able to control the movements of the robot. The robot was 
able to carry out four instructions i.e. move forward, move backward, rotate right and 
left successfully. Table 1 shows movement of the NXT robot based on the cognitive 
action by the user. Table 2 shows the error definitions. The sensitivity and specificity 
of the system is calculated using Eq. (1) and Eq. (2).  By correct cognitive action, we 
mean that we are trying to apply an action consciously, say Pull, so it is applied and 
the cube is pulled (seen coming forward on the screen). By incorrect cognitive action, 
we mean that we are trying to apply the pull command, but our brain is unable to pull, 
so instead of pull action, some other action is performed. Similarly incorrect cube 
action means that although it was supposed to move forward but it moves sideways.  

 
TABLE 1.  List of cognitive actions and robot motion (clockwise CW, counterclockwise CCW) 

Cognitive 
action 

NXT Robot movement Motor movement 

Push Move forward Motor B = CW,   Motor C = CW 
Pull Move backward Motor B = CCW, Motor C = CCW 
Left 
Right 

Turn left 5° 
Turn right 5° 

Motor B = CW,   Motor C = CCW  
Motor B = CCW, Motor C = CW 

 
TABLE 2.  Error definitions for cognitive actions 

True Positive Correct cognitive action, Correct cube action 
False Positive Incorrect cognitive action, Correct cube action 
True Negative Incorrect cognitive action, Incorrect cube action 
False negative Correct cognitive action, Incorrect cube action 

 
Calculation of sensitivity and specificity are shown below; 
 

Negative False ofNumber   Positive True ofNumber 

Positive True ofNumber 
  

+

=ySensitivit                      (1) 

Positive False ofNumber   Negative True ofNumber 

Negative True ofNumber 

+

=ySpecificit                      (2) 

EXPERIMENTAL RESULTS 

To test any cognitive action, one must train the EmoEngine to recognize the brain 
electrical activity for a specific user. Here we have tested the training on five different 
visualizations and examined which imagination will bring the highest power and accu-
racy. Table 3 and Fig. 3 show different visualizations for push action. Table 4 shows 
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results for PUSH action using 5 different visualizations. Table 5 shows results for 
robot motion caused by different cognitive actions tested by 3 subjects. 

 
 
 
 
 
 
 
 
 
 
     

TABLE 3.  Description of different visualizations of applying PUSH action 
Imagination Description 
Pushing cube animation cube in Emotiv SDK cognitiv action 

Letter “P” big 'P' letter in black font 

Walk forward walking forward with surrounding walls moving backward 

Star a 3D star in mono color 

Red color whole image in pure red color 

FIGURE 3.  Different visualizations for PUSH action 

 
TABLE 4.  Results for applying PUSH cognitive action by one subject (17 times) 

Imagination True +ve False +ve True -ve False -ve Sensitivity Specificity 
Pushing cube 9 1 4 3 0.75 0.8 
Letter “P” 5 2 7 3 0.63 0.78 
Walk forward 2 1 9 5 0.29 0.9 
Star 0 0 10 7 0 1 
Red color 5 6 3 3 0.63 0.33 

 
TABLE 5.  Results for robot movement based on cognitive action for 3 subjects (45 times) 

Cognitive Action True +ve False +ve True -ve False -ve Sensitivity Specificity 
Forward 45 0 45 0 1 1 
Backward 42 3 43 2 0.95 0.93 
Left 44 1 43 2 0.96 0.98 
Right 44 1 45 0 1 0.98 

 
It can be seen from Table 4 that visualizing the pushing cube for PUSH gives better 

results since the cube animation is displayed on the control panel. Table 5 shows the 
results of 4 cognitive actions. The sensitivity and specificity is above 90%, which 
means that the robot movements were efficiently controlled. 

 

EEG Analysis and Difficulty Level Test for Different Cognitive 
actions for virtual visualization 

The EEG study is conducted with 16 subjects (14 males, 2 females; mean age 22.39 
± 1.02 years). Four types of activities have been tested, that are Push, Pull, Left and 
Right. The subjects were asked to train two activities (Push and Pull) for 3 minutes, 
then rest for 2 minutes and then test each trained activity for 5 minutes. Then repeat 
the same procedure for Left and Right movement. EEG recordings were made while 
testing the different activities using Emotiv EPOCH headset on virtual 3D cube and 
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this data is analyzed using EEGLab [13] where power level of each electrode for each 
subject and activity level is calculated.  

 
The significance level of the observations is calculated using one tail paired 

students t-test [14]. At the end of the session, subjects filled in a questionnaire that 
included information about their CGPA (cumulative grade point average), weekly 
physical activity and difficulty level of training testing sessions. The results show that 
during the training period, the PUSH cognitive action has moderate difficulty, while 
the rest of the actions are somewhat more difficult to train. During testing, left action 
is easy to apply, while the rest show moderate difficulty [15]. 

 
We have also classified the data into four different groups: 1) low CGPA, 2) high 

CGPA, 3) active life style, 4) in active life style, 5) low CGPA and active life style, 6) 
low CGPA and inactive life style, 7) high CGPA and active life style, 8) high CGPA 
and inactive life style. The distribution of the number of subjects in each group is 
shown in Table 6. Table 7 shows the normalized difficulty level experienced by 
different groups. The difficulty level is categorized into 3 groups; easy, moderate and 
difficult. The values in Table 7 represent the number of subjects experiencing the 
respective level of difficulty divided by the total number of subjects in that group. 

  
TABLE 6.  Distribution of subjects in different groups (total 16 subjects) 

Type of Group No of subjects 
Low CGPA 8 
High CGPA 8 
Active lifestyle 8 
Inactive lifestyle 8 
Low CGPA+ active life style 5 
Low CGPA+ inactive life style 3 
High CGPA+ active life style 3 
High CGPA+ inactive life style 5 

 
TABLE 7.  Normalized difficulty level data for different groups 

  
Type of group Difficult Moderate Easy 

All subjects 0.22 0.42 0.36 
Low CGPA 0.20 0.28 0.52 
High CGPA 0.23 0.56 0.20 
Active lifestyle 0.16 0.42 0.42 
Inactive lifestyle 0.28 0.42 0.30 
Low CGPA+ active life style 0.10 0.35 0.55 
Low CGPA+ inactive life style 0.38 0.17 0.46 
High CGPA+ active life style 0.25 0.54 0.21 
High CGPA+ inactive life style 0.23 0.58 0.20 

 
From the subjective results of those with low CGPA, it can be seen that they 

handled all the situations (push, pull, left, right) easily with very little effort. In 
general, they did not find it difficult. Their EEG result is not significant in general. 
This may be due to the fact that half of the participants find it difficult/moderate while 
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other half find it easy. Hence, the averaging cancels out the effects and the results are 
not significant in general. 

Whereas those with high CGPA, it can be seen that they need moderate effort to do 
all the tasks. From the EEG results, it can be seen that at FC5, P8 and T8, delta, theta, 
and alpha are high for PUSH condition. As for the LEFT and RIGHT condition, theta 
and alpha are generally high for FC5, P7 and P8.  

On the other hand for active subjects, it can be seen that they handled all the 
situations with moderate ease and little effort whereas their inactive counterparts 
found it slightly difficult to handle the trainings. From the EEG results, it can be seen 
that the first group shows decrease in various frequency levels. While the second 
group shows increase in various frequency levels for PULL and RIGHT condition. 

From the subjective results of those with low CGPA and active lifestyle, it can be 
seen that they handled all the situations (push, pull, left, right) easily or with moderate 
effort. In general, they did not find it difficult. From the EEG results, it can be seen 
that at T7 and P7, theta, alpha and beta is high for rest conditions for PULL condition. 
Similar is result for RIGHT condition. As for the LEFT condition, delta is generally 
high. All this point to the fact that the subjects are not finding it difficult and they can 
do the task relatively easily. 

On the other hand, the subjective result is equally divided for the low CGPA and 
inactive lifestyle participants. Their EEG result is not significant in general. This may 
be due to the fact that half of the participants find it difficult while other half find it 
easy. Hence, the averaging cancels out the effects and the results are not significant in 
general. Note that there are only 3 subjects in this group. So the analysis may not be 
significant. 

For those with high CGPA and active lifestyle, subjective results show that the 
majority can do the tasks with moderate effort. The rest of the subjects are equally 
divided between easy and difficult. For those with high CGPA and inactive lifestyle, 
majority can do tasks with moderate effort and the rest of the subjects are equally 
divided between easy and difficult. The EEG results of both groups are almost 
opposite of each other. The first group shows decrease in various frequency levels 
while the second group shows increase in various frequency levels. This means that 
the second group requires more effort to complete the tasks as compared to the first 
group. 

CONCLUSION AND DISCUSSION 

This paper presents a non-invasive and cheap, real time brain computer interface 
system. In this system, the brain EEG signals are acquired by a 14 sensor headset, 
which are then fed to the robot via a computer interface. Four actions have been tested 
that are Push, Pull, Left and Right on the basis of which the robot performed the tasks 
such as move forward or backwards, rotate left or rotate right. It has been observed 
that the system developed was able to control the movements of the robot in real time 
with sensitivity and specificity of above 90%. 

The system has been trained for 16 subjects. The results of initial evaluation and 
feedback from the subjects indicate that training a single task at a time is simple, but if 
the number of the tasks is increased then more effort is required. However, it can be 

45
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

203.135.190.111 On: Tue, 10 Dec 2013 17:26:10



concluded that in future we can develop applications that will use the power of the 
human brain to perform actions in real and virtual environments. In future 
development, we plan to combine both affective action and cognitive actions to allow 
robot to perform more challenging tasks such as picking up an object. 
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