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a b s t r a c t

A coupled formulation based on non-equilibrium thermodynamics, Biot’s elasticity is
derived to model thermal-osmotic flow in very low permeability rock. Darcy’s law has been
modified by incorporating thermal effects from the dissipation process by using standard
arguments of non-equilibrium thermodynamics. The relationship of chemical potential
of water and pore water pressure has been analysed. Helmholtz free energy is used to con-
struct the structure of the mechanics model. The derived coupled equations can be vali-
dated by comparing with those from Mechanics approach. Finally, finite elements are
used to solve the governing equations. The numerical results show the thermal-osmosis
has an important effect on water transport in very low permeability porous media.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Shales make up over 75% of drilled formations, cause over 90% of wellbore instability problems and cost the oil industry
over $500–1000 million each year (Steiger & Leung, 1988). Since shales have a very low permeability and can act as mem-
branes, hydraulic transport is not the dominant form of fluid development in complex conditions. In fact, thermal effects
which caused by high temperature gradient between the drilling mud and wellbore have a several times larger contribution
than hydraulic transport. The water flow caused by thermal effects is known as osmotic flow which can flow directly from
warmer to cooler or from cooler to warmer. Dirksen (1969) has observed this phenomenon in experiments (Dirksen, 1969).

Based on the parameters of a temperature gradient of 2 K/m, a hydraulic gradient of 10 J/m and experimental result of
Srivastava and Avasthi (1975), Carnchan (1984) has estimated that the thermo-osmotic flow through Kaolinite can be 800
times larger than Darcy’s flow (Carnahan, 1983). Ghassemi and Diek (2003) have analysed the mud filtrate invasion due
to temperature gradient and found that the thermal osmotic flow can also be several times larger than hydraulic flow
(Ghassemi & Diek, 2003). Thus, thermal effects will alter the pore pressure and shale strength in wellbore stability analysis.

For heat transport in shales, Wang and Papamichos (1994) have confirmed that heat conduction dominates the heat
transfer process and heat convection can be neglected because of low fluid flow velocity in such rocks (Wang & Papamichos,
1994). In early time, the thermal diffusion into shale formations occurs much more quickly than hydraulic diffusion. Charlez
(1997) analysed the thermal diffusion effects on rock stresses between the drilling mud and the formation (Charlez, 1997).

A few researches have been done on coupled thermal-hydro-mechanical coupled model based on mechanics approach
and the mixture theory approach. The mechanics approach is originated from hydro-mechanical coupled theory developed
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by Terzaghi (1943) and Biot (1962, 1972). Later, Lewis and Schrefler (1987) have developed a constitutive model for thermo-
hydro-mechanical coupling (Lewis & Schrefler, 1987).

Mixture theory is a form of macroscopic approach and has been used to model the biological tissues. The first rigorous
theoretical framework of mixture theory was developed by Truesdell in 1957 (Truesdell, 1957a, 1957b), providing a math-
ematical foundation for interacting continua research. Some review articles have provided more details for the development
progress of mixture theory (Bowen, 1976; Atkin & Craine, 1976). Mixture theory has been extended by Bowen (1984, 1980)
and most recently by Rajagopal and Tao (1995, 1986, 2002, 2003, 2007). Rajagopal and Tao (1995, 2005) have also re-
examined Biot’s equations and placed them within the context of the theory of mixtures, and concluded that Biot’s approach
can be obtained as a special case of mixture theory (Rajagopal & Tao, 1995, 2005).

Mixture theory maintains the individuality of the phases, although constitutive equations for each individual phase have
been formulated that take account of phase interaction effects. Other research has shown that the theory can give an accu-
rate description of the deformation and stress fields under a variety of loading configurations (Holmes, 1986; Holmes, Lai, &
Mow, 1985).

However, it is difficult to obtain information on the interaction between the phases and there are also a few difficulties
associated with applications of mixture theory as discussed by Rajagopal et al. (1986). For example, since balance laws are
posited for each constituent, one has problems with the prescription of boundary conditions. In most problems, one only
knows what the total stress on the boundary is, or the total displacement or velocity (Rajagopal & Tao, 1995; Rajagopal
et al., 1986).

Recently, a single continuum approach to mixtures have been adopted by researchers to avoid the difficulties associated
with the application of mixture theory. Heidug and Wong (1996) adopted an approach in isothermal conditions that does not
explicitly discriminate between the solid and the fluid phases; rather, it views a fluid-infiltrated rock as a single continuum
to analyze the interactions between solid/fluid/chemical (Heidug & Wong, 1996; Baek & Srinivasa, 2004) analyzed large
deformation (Baek & Srinivasa, 2004; Humphrey & Rajagopal, 2002) introduced a new constrained mixture theory model
for studying growth and remodeling of soft tissues (Humphrey & Rajagopal, 2002).

Heidug and Wang’s approach combines Biot’s theory and non-equilibrium thermodynamics and Helmolz free energy,
combining the advantage of mixture theory and mechanics approach in Geomechanics. They studied the chemical osmosis
in a hydro-chemo-mechanical coupled model in Geomechanics. Since the concept is mainly based on mixture theory, it can
be referred as modified mixture theory. However, no work has so far been done for non-isothermal conditions based on mod-
ified mixture theory.

This paper extended the modified mixture theory to non-isothermal conditions. A fully coupled thermal-hydro-mechanical
model has been derived. Thermal osmosis has been included in the coupled formulation. Darcy’s law has been modified to
include thermal effects and the heat conduction equations to include the pressure effects.

The formulation used Helmholtz free energy to derive the relationships for the solid, fluid and temperature components.
The influence of temperature over water chemical potential, and the coupling between the water chemical potential and host
rock have been studied. This has resulted in the derivation of a advance coupling between the thermal, water, solid phases.
Finally, A simple ‘‘experimental’’ setup has been considered for testing the numerical techniques, with the boundary condi-
tions modified (that is, with respect to usual experimental use) to suit the modelling of thermal osmosis.

2. Balance laws

In mixture theory, a material point Xa for the ath phase in an arbitrary reference configuration is given. At time t, it’s posi-
tion xa can be defined as

xa ¼ xaðXa; tÞ ð1Þ

The mass density of the ath phase (which, in mixture theory, can be either solid or fluid) can be defined in two different
ways: that is, either based on the volume of the whole mixture as qa(x, t), or based on the volume that the constituent phase
occupies as qa

t ðx; tÞ, in which the subscript t indicates that this is the ‘‘true’’ density. Hence, if the volume fraction of the ath
phase is

/a ¼ dVa

dV
ð2Þ

where Va and V are the volumes of the phase and mixture, respectively, the relationship between qa(x,t) and qa
t ðx; tÞ is given

by

qaðx; tÞ ¼ /aqa
t ð3Þ

In a solid-water coupled field, the water component mass density qw is related to the unit volume of the fluid–solid mixture
which has been expressed in mixture theory. Thus it is related to the true mass density qw

t through

qw ¼ /wqw
t ð4Þ

in which /w is the porosity of the medium.
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2.1. Balance equations for solid and fluid

Let V denote the volume of an arbitrary domain within the rock and S its boundary, which is attached to the solid phase
(that is, there is no movement of solids across the domain boundary; only movement of fluid). The balance law for the ath
phase is given by

D
Dt

Z
V
qadV ¼

Z
S
qaðva � vsÞ � ndS ð5Þ

where n is the unit outward normal, va is the velocity of the ath phase, vs is the velocity of the solid, and the time derivative
following the motion of the solid is

D
Dt
¼ @t þ vs � r ð6Þ

where @t is the time derivative and r the gradient.
Thus, the balance equation for the solid mass is

_qs þ qsr � vs ¼ 0 ð7Þ

and for the water it is

_qw þ qwr � vs þr � Iw ¼ 0 ð8Þ

where Iw is the mass flux of water defined as

Iw ¼ qwðvw � vsÞ ð9Þ

and vw is the velocity of water.

2.2. Balance equation for heat transport

In the arbitrary domain V, the thermal density can be changed only through the influx and efflux of heat flow across the
boundary S. Since the capacities of heat of solid mass and of fluid mass are different, here qs denotes the heat density of solid
which can be defined as qs = qsCsT while qw denotes the heat density of water which can be defined as qw = qwCwT. Here, Cs

and Cw denote the specific heat capacity of solid and water.
Further, the thermo flow across the boundary S can be separated in two parts: (1) the heat flow contained in the water

flow which can be expressed as hwIw in which hw is the enthalpy of water; (2) reduced heat flow q (Katachalsky & Curran,
1965). Thus, followed the fundamental balance equation for thermodynamically open systems, the heat flow equation can be
derived as:

D
Dt

Z
V
ðqs þ qwÞdV ¼

Z
S
ðqþ hwIwÞ � ndS ð10Þ

From Eq. (6), the above equation can be rewritten as

ðqs þ qwÞ þ ðqs þ qwÞr � vs þr � ðqþ hwIwÞ ¼ 0 ð11Þ

Further discussion of heat balance equation is in Section 5.3.

2.3. Balance equation for Helmholtz free energy

For a non constant temperature field in the absence of chemical reactions, it is convenient to use Helmholtz free energy
(Haase, 1969), which combines both internal energy and entropy.

The balance of internal energy is

D
Dt

Z
V
edV ¼

Z
S
ðrvs � qÞ � ndS�

Z
S

hwIw � ndS ð12Þ

where e is the internal energy density, r is the Cauchy stress tensor, q is heat flux and hw is the enthalpy density of water.
The balance of entropy density (g) is

D
Dt

Z
V
gdV ¼

Z
S

�q
T
� ndSþ

Z
S
�gIw � ndSþ

Z
V
cdV ð13Þ

where c is the entropy production per unit volume.
The Helmholtz free energy density is defined as w = e � Tg and the chemical potential is defined as l = hw � Tg (Haase,

1969). Hence, the balance equation for Helmholtz free energy is

D
Dt

Z
V

wdV ¼ �
Z

S
rn � vsdS�

Z
S
lIw � ndS�

Z
V

TcdV ð14Þ
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By using Reynold’s transport theory, the derivative version of the balance equation for the free energy can be expressed as

_wþ wr � vs �r � ðrvsÞ þ r � ðlIwÞ ¼ �Tc 6 0 ð15Þ

3. Extending Darcy’s law and thermal diffusion law

Here, a macroscopic expression for the dissipation generated by the frictional resistance at the solid and fluid interface at
non-isothermal conditions can be obtained by using standard arguments of non-equilibrium thermodynamics (Katachalsky
& Curran, 1965),

Tc ¼ q � rð�TÞ
T

þ Iw � rð�lwÞ ð16Þ

in which l is the chemical potential of water. Function (16) is different from dissipation function of isothermal condition
because of the term q � rð�TÞ

T .
The relationship between water chemical potential l and water pressure p can be derived by using the Gibbs–Duhem

equation (Moran & Shapiro, 2000) based on the assumption of local isothermal condition as
qw

t rl ¼ rp ð17Þ

in which p is the pore pressure of the fluid. Also, the Darcy velocity is defined as

u¼/wðvw � vsÞ ð18Þ

Hence, Eqs. (15) and (16) can be used to rewrite the dissipation function as

0 6 Tc ¼ q � rð�TÞ
T

� urp ð19Þ

3.1. Phenomenological equations

Since u is velocity, the term urp should be rewritten as

urp ¼ qw
t u

� � rp
qw

t

� �
ð20Þ

Thus, the dissipation function can be written as

Tc ¼ � qw
t u

� � rp
qw

t

� �
� q � rT

T
ð21Þ

The relationship between the flow �qu, q and driving forcerp, rð�TÞ
T is obtained with the help of phenomenological equations

(Moran & Shapiro, 2000) which express the linear dependence of flow on the corresponding force.
The phenomenological equations can be written as

qw
t u ¼ �L11 rp

qw
t

� �
� L12rT

T
ð22Þ

q ¼ �L21 rp
qw

t

� �
� L22 rT

T

� �
ð23Þ

where L11, L12, L21, L22 are phenomenological coefficient.
For the fluid diffusion, the Darcy’s law can be derived as

u ¼ � L11

qw
tð Þ2
rpð Þ � L12

qw
t

rT
T
¼ � L11

qw
tð Þ2

 !
rpþ L12

L11

 !
qw

t rT
T

" #
ð24Þ

in which L11

qw
tð Þ

2 ¼ k
v, k is the permeability and v is the fluid’s viscosity; L12

L11 ¼ rf can be defined as reflection coefficient, serves as a

measure of the efficiency of the osmotic transport.
Consequently, the Darcy’s law is changed to

u ¼ � k
v rpþ rq

qw
t rT
T

� �
ð25Þ

in which, the thermal osmosis has been considered.
For thermo diffusion, the thermo flow function can be expressed as

q ¼ �L21 rp
qw

t

� �
� L22 rT

T

� �
¼ � L21p

qw
tð Þ2

 !
qw

t
rp
p

� �
� L22 rT

T

� �
¼ �Lq qw

t
rp
p

� �
� L22

T
rT ð26Þ
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where Lq ¼ L21p

qw
tð Þ

2

� �
, Lq is pressure diffusion coefficient for thermo; L22

T ¼ k is defined as conduction coefficient.

3.2. The coupling matrix and result analysis

The whole coupling matrix can be written as

u
q

� �
¼ �

k
v

krqqw
t

vT
Lqqw

t
p k

0
@

1
A rp

rT

� �
ð27Þ

If without considering the coupling term of heat flow and water flow, the matrix above can be written as the matrix below

u
q

� �
¼ �

k
v 0
0 k

 !
rp

rT

� �
ð28Þ

which is generally used in research of coupled model.

4. Constitutive relations

The constitutive equations for the stress, strain and temperature response are formulated here by considering dissipation
function and free energy equation.

4.1. Basic equation of state

It is assumed that the rock maintains mechanical equilibrium, so thatr � r = 0. By using Eqs. (15) and (16), for Helmholtz
free energy density balance and entropy production, the resulting balance equation for w is derived as

_wþ wr � vs � trðrrvsÞ þ lr � Iw þ Tr � q
T

� 	
¼ 0 ð29Þ

Eq. (29) has been included the thermo part Tr � q
T

� �
from dissipation function. Since q

T ¼ S, thus it can be regarded as entropy
flow to simplify Eq. (29). Further, Eq. (16) can also be written as entropy flow as follows:

Tc ¼ q � rð�TÞ
T

þ Iw � rð�lwÞ ¼ S � rð�TÞ þ Iw � rð�lwÞ ð30Þ

The difference is that the corresponding force for q isr(�T)/T while the corresponding force for S isr(�T). This is explained
here to give a right source for next discussion.

The expression of the referential equivalent of Eq. (29) can be derived from classical continuum mechanics, thus the rock’s
deformation state can be defined. The starting equations in the derivation process are

F ¼ @x
@X
ðX; tÞ; E ¼ 1

2
ðFTF� 1Þ; J ¼ dV

dV0
; _J ¼ Jr � vs ð31Þ

where X is an arbitrary reference configuration, x is the position at the time t, F is the gradient, E is Green strain, J is defor-
mation gradient, dV is the volume of the current configuration and dV0 is the volume of the reference configuration.

By using Eq. (31), Eq. (29) can be rewritten as

_W ¼ trðT _EÞ þ l _mþ T _Smixture ð32Þ

In which W = Jw is the free energy in the reference configuration.
Smixture is used here to give a clear concept of the entropy flow density per unit referential volume through solid and fluid

mixture as Smixture ¼ J/wSw
t þ J/sSs

t ; S
w
t is the entropy flow density through fluid, while Ss

t is the entropy flow density through
solid; m ¼ Jq ¼ J/wqw

t is the mass of water per unit referential volume; T is the second Piola–Kirchhoff stress, r is the Cauchy
stress.

4.2. Helmholtz free energy density of the pore water and wetted mineral matrix

If the mass density per unit fluid volume is defined as qpore
t and the Helmholtz free energy density of the pore water is

wpore, then, based on classical thermodynamics, the free energy density can be expressed as

wpore ¼ �pþ lqpore
t þ TSpore

t ð33Þ

Also, according to the Gibbs–Duhem equation,

_p� _TSpore
t ¼ qpore

t _l ð34Þ

From Eq. (33)

X. Chen et al. / International Journal of Engineering Science 64 (2013) 1–13 5
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_wpore ¼ � _pþ _lqpore
t þ l _qpore

t þ _TSpore
t þ T _Spore

t ð35Þ

and so, by introducing Eq. (34),

_wpore ¼ l _qpore
t þ T _Spore

t ð36Þ

The free energy density of the wetted mineral matrix can be derived by subtracting from the free energy W of the combined
rock/fluid system the contribution J/wpore due to pore water.

ðW� J/wwporeÞ ¼ trðT _EÞ þ p _tþ T _Ssolid ð37Þ

where t = J/ is the pore volume per unit referential volume, and where, Ssolid ¼ S� J /wSpore
t

� �
is the referential entropy den-

sity of the solid.

4.3. Constitutive equation structure

For reasons of convenience, the dual potential is used instead of directly from W � J/wwpore

W ¼ ðW� J/wwporeÞ � pt� TSsolid ð38Þ

where W is a function of E, p and T, and thus expressions for r, t and Ssolid may be obtained.
Eq. (37) implies that the time derivative of W(E,p,T) satisfies the relationship

_WðE;p; TÞ ¼ trðT _EÞ � _pt� _TSsolid ð39Þ

Since

_WðE;p; TÞ ¼ @W
@Eij

� �
p;T

_Eij þ
@W
@p

� �
Eij ;T

_pþ @W
@T

� �
Eij ;p

_T ð40Þ

the following equations are obtained:

Tij ¼
@W
@Eij

� �
p;T

; t ¼ � @W
@p

� �
Eij ;T

; Ssolid ¼ �
@W
@T

� �
Eij ;p

ð41Þ

If Eq. (41) is differentiated with respect to time, the fundamental constitutive equations for the evolution of stress, pore vol-
ume fraction and temperature can be expressed as

_Tij ¼ Lijkl
_Ekl �Mij _pþ Sij

_T ð42Þ
_t ¼ Mij

_Eij þ Q _pþ B _T ð43Þ
_Ssolid ¼ Sij

_Eij þ B _pþ Z _T ð44Þ

where the parameters Lijkl, Mij, Sij, Z, B and Q are material-dependent constants defined by the following group of equations:

Lijkl ¼
@Tij

@Ekl

� �
p;T

¼ @Tkl

@Eij

� �
p;T

;

Mij ¼ �
@Tij

@p

� �
Eij ;T

¼ @t
@Eij

� �
p;T

;

Sij ¼
@Tij

@T

� �
Eij ;p
¼ � @Ssolid

@Eij

� �
p;T

; ð45Þ

Z ¼ @Ssolid

@T

� �
Eij;p

; B ¼ @t
@T

� �
Eij;p

¼ @Ssolid

@p

� �
Eij;T

; Q ¼ @t
@p

� �
Eij ;l

4.4. Linear isotropic response

The non-linearity of the equations is of a geometrical nature and associated with large deformations. For isotropic mate-
rials, the tensors Mij and Sij are diagonal; that is, they can be written in the form of scalars f and xT, as follows:

Mij ¼ fdij; Sij ¼ xTdij ð46Þ

and the elastic stiffness Lijkl can be formed as a fourth-order isotropic tensor:

Lijkl ¼ Gðdikdjl þ dildjkÞ þ K � 2G
3

� �
dijdkl ð47Þ

where G is the rock shear modulus and K the bulk modulus.

6 X. Chen et al. / International Journal of Engineering Science 64 (2013) 1–13
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With the assumption of small strains, the governing stress and pore fraction equations, (42) and (43), can be changed to
the form

_rij ¼ K � 2G
3

� �
_ekkdij þ 2G _eij � f _pdij þxT

_Tdkl ð48Þ

_t ¼ f _eii þ Q _pþ B _T ð49Þ

where the void compressibility Q relates to the scalar f according to Q = (1/Ks)(f � /) + /w/Kw, in which Ks is the bulk modulus
of the solid matrix and Kw is the bulk modulus of fluid mass; the quantity f is related to the bulk moduli, K and Ks, in a poro-
elastic manner, that is, f = 1 � (K/Ks); xT = bs/3 and bs is the thermal expansion coefficient of solid; B = �/wbw � (1 � /w)bs in
which bw is the thermal expansion coefficient of water.

Hence, the stress and volume fractions of Eqs. (48) and(49) can be rewritten as

_rij ¼ K � 2G
3

� �
_ekkdij þ 2G _eij � f _pþxT

_T ð50Þ

_t ¼ f _eii þ Q _pþ B _T ð51Þ

in which eij ¼ @ui
@xj

and ui(i = 1,2,3).

5. Final equations of motion for modified mixture theory

5.1. Solid phase

If the mechanical equilibrium condition

@rij

@xij
¼ 0 ð52Þ

is introduced into Eq. (48), the final equation is

K � 2G
3

� �
@2 _uk

@xk@xj
þ 2G

@2 _ui

@xk@xj
� f

@ _p
@xi
þxT

@ _T
@xi
¼ 0 ð53Þ

5.2. Fluid phase

From Eqs. (4) and (8), and using the Euler identity, the following equation is derived:

ðtqw
t Þ þ r � qw

t u
� �

¼ 0 ð54Þ

With the further assumption that the fluid is incompressible, Eq. (40) can be rearranged as

_tþr � u ¼ 0 ð55Þ

Thus, the control equation for the fluid phase can be written as

f
@ _ui

@xi
þ Q _pþ B _T �r � kv rpþ rqqw

t

T
rT

� �
¼ 0 ð56Þ

5.3. Thermal phase

From Eq. (11), since qs and qw are related with mass density of qs and qw which are expressed relative to the unit volume
of the fluid and solid mixture, the thermo density relative to true mass density can be defined as qs

tq
w
t . The relationship be-

tween qsqs
t and qwqw

t can be defined as

qs
t ¼ qs=/s and qw

t ¼ qw=/w ð57Þ

By using Euler identity, Eq. (11) can be rewritten as

tqw
t þ ð1� tÞqs

t

� �
þr � qw

t /wðvw � vsÞhw þ q
� �

¼ 0 ð58Þ

Since, the Darcy velocity is defined through the definition

u ¼ /wðvw � vsÞ ð59Þ

Eq. (58) can be rewritten as

tqw
t þ ð1� tÞqs

t

� �
þr � qw

t uhw þ q
� �

¼ 0 ð60Þ

X. Chen et al. / International Journal of Engineering Science 64 (2013) 1–13 7
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In which hw can also be expressed as hw = CwT.
By neglecting the temperature and pressure dependence of fluid and solid densities and by neglecting the thermo cou-

pling term due to pressure, Eq. (60) can be rearranged as

@

@t
ð1� /wÞqsCs þ /wqwCw
 �

T
� 

þ qwCwðrT TÞu�rTkrT ¼ 0 ð61Þ

which is the same function as that derived based on mechanics approach.
Further, in this paper, by neglecting the convection term, the thermo transport equation becomes as

@

@t
ð1� /wÞqsCs þ /wqwCw
 �

T
� 

�rTkrT ¼ 0

6. Numerical results for thermal osmosis

Thermal osmosis might have an influence on wellbore stability or high level nuclear waste disposal with high tempera-
ture gradient. In this paper, a two dimensional axisymmetric model with the width of 50 mm and height of 15 mm is applied
to analyze the thermal osmosis.

The boundary and initial conditions below are used to emulate the drilling impact on the wellbore stability:

(1) Mechanical equilibrium: the mechanical equilibrium has been assumed at the initial time. The openhole boundary is
assumed free while the far boundary is assumed fixed in displacement.

(2) Water transport: the initial formation pressure of 106 Pa is assumed. The openhole boundary is raised immediately to
15 � 106 Pa to simulate the water-based mud pressure during drilling. Water will transport from openhole boundary
inward due the driving force of water pressure.

(3) Heat transport: the initial formation temperature is assumed 338 K. The temperature in the openhole boundary is
immediately raised to 388 K and maintained at this value throughout to simulate the raising temperature in the
mud during drilling.

Three reflection coefficients have been chosen as rq = �1, 0, 1; which represent different kinds of osmosis, such as neg-
ative osmosis (rq = �1, water flows from higher temperature to lower temperature if there is no water pressure gradient), no
osmosis ( rq = 0, the driven force of water flow is only the water pressure gradient), positive osmosis (rq = 1, water flows
from lower temperature to higher temperature if there is no water pressure gradient). The direction of the flow depends
on the membrane like material such as clay or shale. Such flow behaviour in both directions has been observed in laboratory
tests using compacted clays (Gray & O’Neill, 1976). In actual conditions for drilling, the driving force for water flow might be
the combination of water pressure gradient and thermal osmosis, apart from formation deformation. The parameters used
for the numerical techniques is summarized in Table 1.

The pore water pressure, displacement and temperature have been varied during the simulation to analyse the coupling
effects.

6.1. Analysis: The effects of thermal osmosis

In order to set the stage for discussion and comparison, the case with no thermal osmosis will be used as the base case.
When there is no thermal osmosis (rq = 0), water flows from higher pore pressure to lower pore pressure. This is illustrated
by a monotonic decreasing pressure profile in Fig. 1, typical of a diffusion curve, along the distance. At steady state
(t = 3600 s), the formation pressure equilibrates the prescribed pressure at the boundary, as expected. When the reflection
coefficient is set to negative, the thermal osmotic effect comes into play and causes influx of water into the porous medium.
This increased transport of water into the formation is driven entirely by the thermal gradient. This thermal-related osmosis
causes the pore pressure within the porous medium to rise. This increase in the pore pressure is proportional to the temper-
ature gradient in the porous medium. At steady state, the entire porous medium is at a higher pore pressure than the pre-
scribed boundary pressure. When the reflection coefficient is set to unity, in other words, water flows from lower

Table 1
Parameters used for the numerical experiment (Ghassemi & Diek, 2003).

Young’s modulus 2.6 � 104 MPa
Poisson’s ratio 0.20
Thermo-osmotic coefficient 6.0 � 10�11 m2/s
Thermal diffusivity 1.6 � 10�6 m2/s
Porosity 0.4
Permeability 7.66 � 10�15 m2/s
Biot coefficient 1
Thermal coefficient of heat expansion, solid 0.9e�6
Thermal reflection coefficient 1, 0, �1
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Fig. 1. Pore pressure distribution.

Fig. 2. Displacement distribution.
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temperature to higher temperature, the porous medium experiences an efflux of water. Again, this efflux is driven entirely by
a negative temperature gradient. Consequently, the pore pressure in the formation decreases very fast in the beginning of the
simulation. At steady state, the entire porous medium is at a lower pressure than the prescribed boundary pressure.

Fig. 3. Temperature distribution.

Fig. 4. Pore pressure distribution with time.
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Fig. 6. Pore pressure distribution.

Fig. 5. Temperature distribution.
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Fig. 2 shows the axial displacement alone the distance. The case with negative reflection coefficient experiences the larg-
est displacement due to the efflux of water. This is expected because the coupling nature of the formulation requires that the
efflux of water is compensated by the shrinkage of the porous medium. On the other hand, the case with positive thermal-
osmotic coupling experiences the least displacement due to the influx of water.

Fig. 3 shows the thermal distribution in the rock sample. It is observed that there is a sudden jump of temperature at the
early stage of simulation. In this paper, the focus is on the influence of thermal osmosis coupling, it is thus assumed that
thermal conduction is not affected by any other process such as mechanical deformation and water transport. The temper-
ature distribution for different coefficient of reflections is expected to be the same. The temperature jump is hence inter-
preted here as numerical oscillation which could be due to a sudden increase of prescribed temperature at the boundary
with very high thermal gradient. Attempts were made to use smaller time step sizes to no avail.

Different selected time stations at t = 60 s, 1 h, 1 day and 1 month have been chosen to illustrate the osmosis effects. Fig. 4
shows the negative thermal osmosis helps raise the driving force pore water pressure gradient for water flow. If the temper-
ature gradient goes down, the thermal osmosis contribution in the driving force goes down and effect the water pressure
drops down from 1 day to 1 month. It can be predicted that if the temperature difference disappears, the only driving force
for water flow will just be water pressure.

The results for temperature and pore pressure distribution at t = 10e5 s have been shown in Figs. 5 and 6, respectively.
Since there is a constant gradient of temperature distribution against the distance (Fig. 5), there might be correspondingly
constant constant gradient for pore pressure due to thermal osmosis for rq = �1 and + 1, as shown in Fig. 6. However, if
rq = 0, the coupling between thermal osmosis and pore pressure disappears from Eq. (56), thus the pore pressure equals zero
and has not be affected by the temperature gradient.

7. Conclusion

In the paper, a new coupled formulation including thermal osmosis based on modified mixture theory has been obtained.
Modified mixture theory is based on mixture theory, non-equilibrium thermodynamics and Biot elasticity. Darcy’s law has
been extended by including thermal osmosis.

A simple numerical example has been chosen to analyze the osmosis effects. Negative thermal osmosis, positive thermal
osmosis and non osmosis have been analyzed. It has been predicted that thermal osmosis might have a strong influence on
water transport and then mechanical deformation.

Further experiment might need for refine the osmosis coefficient rq because it depends on the rock or clay itself.
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