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Abstract—In this paper we propose an efficient scalability 
approach for the trajectory piecewise linear (TPWL) 
macromodels through the utilization of Chebyshev 
interpolating polynomials in each piecewise region. The 
scalability achieved is in two dimensions (2D) that mainly 
improve the local approximation properties of TPWL 
macromodels. Horizontal scalability is achieved by decreasing 
the number of linearization points along the trajectory; 
vertical scalability is obtained by extending the range of 
macromodel to predict the response of a nonlinear system for 
inputs far from training trajectory. In this way more efficient 
macromodels are obtained in terms of simulation speed up of 
complex nonlinear systems. We provide the implementation 
details and illustrate the 2D scalability concept with an 
example using nonlinear transmission line. 

Keywords-Trajectory; Chebyshev polynomial; Taylor 
polynomial; State space (SS); Model order reduction (MOR) 

I.  INTRODUCTION  
Model Order Reduction (MOR) techniques used for 

macromodeling of nonlinear systems [1–3],[4–8] rely on the 
piecewise linearization (PWL) of original system response.  
Linearization is performed by expanding nonlinear function 
into its Taylor polynomials. Trajectory methods like [4],[9] 
use linear and quadratic Taylor polynomials in their 
piecewise regions. However, due to poor convergence 
properties of Taylor polynomials, these approaches cannot 
guarantee the correct response for the inputs that are not 
included in training or have greater magnitudes than training 
inputs. 

It is intuitive to use efficient orthogonal polynomials like 
Chebyshev polynomial that can interpolate non-reachable 
states better than Taylor interpolating polynomials. In this 
work we propose 2D scalability of TPWL macromodels by 
combining Chebyshev-Newton polynomials with nonlinear 
state space structure.  

Previous attempts (e.g., [10]) use Chebyshev polynomials 
standalone to approximate nonlinear functions in electronic 
circuits. To the best of our knowledge this is the first 
implementation of Chebyshev polynomials in SS model 
structure to predict the response of nonlinear electronic 
circuits and system. 

 

II. BACKGROUND 
A. Macromodeling of Nonlinear Systems 

A nonlinear dynamical system can be described by a SS 
approach  [4] shown in equation (1). 
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where NRtx ∈)(  is state vector at time t representing the 
unknown node voltages and branch currents; 

NN RRf →: and NN RRg →: are nonlinear vector 
valued functions representing charge/flux and resistive 
terms in the circuit respectively; B is a SS-dependent 

MN × input matrix that can be considered as constant if its 
value does not change with time; u: MRR → is the input 
signal; C is a KN × output matrix and KRRy →: is the 
output signal.  

Several MOR techniques have been developed to model 
strong and weak nonlinear circuits and systems using the SS 
approach in equation (1) [4–8]. Two of the most popular 
techniques for modeling strong nonlinear systems using SS 
are Trajectory Piecewise Linear (TPWL) [4] and Piecewise 
Polynomial (PWP) [9].   
 
B. Chebyshev Polynomials 

 
Chebyshev polynomials of first kind are given in 

equation (2) [12], where  x′ are the nodes of these 
polynomials; N is the order of polynomial. 
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The nodes of Chebyshev polynomials in equation (2) are 
calculated using equation (3) as long as trajectory amplitude 
lies in the interval [-1,1]. 
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    For an arbitrary interval [a,b], x needs to be normalized 
and nodes are calculated according to equation (4). 
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   To approximate a function f(x), discrete orthogonality of 
Chebyshev polynomials can be exploited to define the 
truncated Chebyshev series shown in equation (5) [12]. 
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To generate interpolating polynomials that can be 
practically simulated with SS of form (1), a combination of 
Netwon polynomials with Chebyshev knots [11] can be used. 
This implies that the knots of interpolating polynomials are 
generated using chebyshev knot formulae given in equation 
(5) or (6) and then generate the polynomial using Newton 
divided difference method. Resulting polynomial for 
approximating the function f(x) is given by equation (6), 
where c1,c2,c3..cn are the polynomial coefficients. 
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III. CHEBYSHEV POLYNOMIALS FOR 2D SCALABILITY OF 
LOCAL MODELS 

A. 2D Scalability of the Trajectory Macromodels 

It has been shown in section II that TPWL utilizes pure 
linear model in each linearized region, whereas PWP uses 
higher order Taylor polynomials to improve local 
approximation in each piecewise region. However, due to 
limited region of convergence of Taylor polynomials, these 
polynomials are unable to interpolate the non-reachable 
states that are not excited during model training. Chebyshev 
polynomials guarantee convergence inside an interval [a,b], 
as long as no singularities lies within the interval [12]. This 
means that higher order Chebyshev polynomials can be 
employed confidently in each region to interpolate non-
reachable states during simulation. Advantages of using 
Chebyshev polynomials in SS are twofold. Primarily, due to 
guaranteed convergence it allows to use higher order 
polynomials in each region. Secondly, it reduces the overall 
number of linearization points used for model generation. 
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evaluated at 100 points of x = -2.5:0.05:2.5. All points are 
used for curve fitting. Taylor series expansions are 
performed around the origin. One can observe from figure1 
that as long as input x is small within the range of (-1,1), 
Taylor polynomial fit is better (at the expense of high 
polynomial orders). 

Outside the region, Taylor polynomials start diverging 
from solution and even increasing order does not show 
significant difference. On the other hand, single Chebyshev 

polynomial (of relatively high order of 20) is able to fit the 
complete curve.   

 

 
Fig. 1. Higher degree Chebyshev and Taylor polynomial 

approximations 
  
This implies that for large input swing, Chebyshev 

models can cover the large SS regions as compared to 
Taylor polynomials, where multiple linearization points 
with many polynomials are used to cover large inputs. This 
also provides the intuition that total number of linearization 
points can be reduced using Chebyshev polynomials, thus 
enabling fast simulation of macromodels. 

 

 
Fig. 2.  Generation of linearized models using Taylor and Chebyshev 

polynomials along a trajectory of nonlinear system in a 2D SS 
 

Consider an example illustrated in figure 2, Nine 
linearization points are generated along a training trajectory 
A using Taylor polynomials. It can be seen that as long as 
input is closer to linearization points, trajectories (B and C) 
fall inside the regions of linearization points. Once input is 
far from training input, other trajectories (D and E) are 
distant from A. However, large rectangles representing 
Chebyshev linearization regions are able to cover all 
trajectories far from training trajectory A. It implies that 
Chebyshev polynomials can improve the scalability of 
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TPWL models and increase the scope of a macromodel in 
2D: horizontally the number of linearization points is 
reduced; vertically the span is increased to cover more 
trajectories far from training trajectory (2D extensions can 
be observed from dashed lines in figure 2). 

 
B. Representation of nonlinear function with Chebyshev 

polynomials 
        Without lost of generality, state equation (1) can be 
expressed as 

     )()( tBuxfx
dt
dE +=                                      (7) 

where function g(x) is considered to be linear and is 
replaced with a constant E. Similarly, B is considered to be 
time invariant.  

The nonlinear function in equation (7) is f(x) that can be 
approximated using Chebyshev interpolating polynomial. 
Replacing f(x) in equation (7) with nth order Chebyshev 
interpolating polynomial, resulting state equation has the 
form shown in equation (8). 

              
(8) 

 
where nccc ,...,, 21  are the polynomial coefficients 
computed using Newton divided difference method  [11].  

IV. MACROMODEL GENERATION USING CHEBYSHEV 
POLYNOMIALS 

In this section we provide steps required to obtain 
macromodels using Chebyshev interpolating polynomials. 

A. Macromodel Training Input 
In order to generate accurate macromodels, the 

macromodel needs to be trained with the input that can 
excite all possible states of SS. A good training input should 
be strong enough that it forces the SS to its upper bounds 
[9]. 

Typically for training, trajectories are generated by 
combining signals of different amplitudes, frequencies and 
phases. In this study, we use single training data by 
superimposing a 500mV, 10us PRBS signal on 120Hz, ±2 V 
sinusoidal. A High frequency PRBS signal is expected to 
excite all possible states of SS and high input values force 
SS to its maximum limits. 

 

B. Macromodel Generation 
The aim of using Chebyshev polynomials in SS is to 

generate minimum number of piecewise regions (or single 
region) through interpolating models for whole trajectory. 
The model generation steps are summarized as follows. 

 
1. Simulate the full system with training input proposed 

in section IV.B and transfer data to MATLAB 
environment as explain in section IV.A. 

2. Initialize  order n for Chebyshev polynomials. 

3. Generate Chebyshev interpolating knots using 
equations (3) or (4) according to input range. 

4. Employ Newton divided difference method to obtain 
approximating polynomial in terms of state variable 
x, such that 
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5. Traverse the full training trajectory while ensuring 

that relative error δ<
−
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the relative error tolerance. 
6. If relerror > δ , the order of polynomial increases by 

some predefined increment step �. Value of � is 
usually set in the range of one to five. The process 
repeats from step 2 to 6 until transient simulation data 
ends. 

 

V. EVALUATION OF CHEBYSHEV POLYNOMIAL 
MACROMODELS 

A simplified nonlinear transmission line shown in fig. 3 
[9] is employed to evaluate the algorithm and then compare 
it with Taylor polynomial based PWP implementations.  
The circuit consists of resistors, capacitors and diodes with 
constitutive equation 1)40exp( −= vid

.All resistors and 
capacitors have unit value, i.e., R=C=1. The single input is 
the current source entering node 1, u(t) = i(t); the single 
output is the voltage at node 1, y(t) = v1(t).  
 

 
Fig. 3. Nonlinear Transmission Line [9] 

 

Macromodel is trained using a combination of 
sinusoidals with different amplitudes, phases and 
frequencies. To evaluate the macromodel generated using 
Taylor and Chebyshev polynomials, a transient simulation 
of 200ms is run with input signal of u(t)=i(t)=2sin(2�10t), 
input current amplitude of ±2A and 10Hz frequency. In this 
implementation, we generate single Taylor and Chebyshev 
polynomial models representing nonlinear function f(x) for 
the whole trajectory. Figure 4 show the simulation results of 
Chebyshev and Taylor polynomial macromodels. Order of 
both polynomials is set to 10.It is very clear from figure that 
output generated by Chebyshev macromodel matches 
exactly with original systems output. Whereas, there is lose 
in accuracy for Taylor polynomial macromodel.  

To evaluate these macromodels for inputs far from 
training input, we run a transient simulation in which input 
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is larger than the training input, i.e., u(t)=2.6sin(2pi10t) 
with input current amplitude of ±2.6A. Order of both 
polynomials is 10. One can clearly observe from the figure 5 
that accuracy of output voltage for Taylor macromodel is 
poor.  

 
Fig. 4. Chabyshev and Taylor polynomial macromodels outputs for input of 

i(t)=2sin(2�10t) 
 
It is mentioned in section III.A that as input starts moving 

far from training trajectory the output of the Taylor 
polynomial macromodel starts diverging from the original 
solution. In this case, input is only 0.1A far from training 
trajectory and there is a significant lost in accuracy for 
Taylor macromodel. On the other hand, Chebyshev 
macromodel output match with original output with very 
good accuracy.  

 

 
Fig. 5. Chebyshev and Taylor polynomial macromodels outputs for input of 

i(t)=2.6sin(2�10t) 
 

   We also test the capability of chebyshev polynomial 
macromodel for the case when system input is far from 
training input. We run a transient simulation with input 
signal u(t)=5.4sin(2pi10t), i.e., input current swings 
between ±5.4A, which means that input is 2.9A far from 
training input.  

It is very clear from the result of figure 6 that even for 
the input far from training input, Chebyshev macromodel 
accuracy is reasonable. This proves that Chebyshev 
macromodels are efficiently able to interpolate the states 
that are not excited by training input.    

We also test macromodels for two other inputs i.e., 
i(t)=exp(-t) and i(t) = (cos(2�t/10)+1)/2 [4]. The simulation 
results are shown in figure 7 and figure 8.  

 
Fig. 6. Chebyshev polynomial macromodel output for input of 

i(t)=5.4sin(2�10t) 
 

 

 
Fig. 7. Chebyshev and Taylor polynomial macromodels outputs for input of 

i(t)=exp(-t) 
 

 
Fig. 8. Chebyshev and Taylor polynomial macromodels outputs for input of 

i(t)= (cos(2�t/10)+1)/2 
   
    It can be seen from simulation results in figure 8 and 
figure 9 that Taylor polynomial macromodel response (in 
red) diverge from original systems response. On the other 
hand Chebyshev-Newton polynomial macromodel response 
(in green) is almost indistinguishable from original system 
response (in black). 
    We also measure the simulation speed of both 
macromodels. To measure speed, we count the number of 
samples in which response of system becomes at steady 
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state. Taylor polynomial macromodels stabilize after 56 
samples whereas Chebyshev polynomial macromodels 
stabilize after 5 samples that are negligible. This proves that 
Chebyshev macromodels perform much faster than the 
Taylor macromodels.  

VI. CONCLUSION 
This paper presents a 2D scalability approach to improve 

the local approximation properties of TPWL macromodels 
through the utilization of Chebyshev interpolating 
polynomials. To scale the SS horizontally, we use single 
polynomial of order 10 for both Chebyshev and Taylor 
macromodels to cover the whole trajectory. Both achieve 
the good accuracy under the same conditions but Chebyshev 
macromodels run faster than Taylor macromodels. We also 
compare their capabilities to predict responses for the inputs 
far from training trajectory. Compared with Chebyshev, 
Taylor macromodels lose their accuracy significantly even 
when input is ±2.6A i.e. only ±0.1A far from training input 
current of ±2.5A. On the other hand Chebyshev macromodel 
accuracy is very good for input ±0.1A far from training. The 
upper bound of Chebyshev macromodel is also tested with 
the input current of ±5.4A that is ±2.9A far from training 
input swing ±2.5A.Chebyshev macromodel shows very 
reasonable accuracy for this input as well. Therefore, 
Chebyshev polynomials are able to scale trajectory models 
in 2D and achieve the goal of simulation speedup as 
compared to conventional Taylor polynomial macromodels. 

In future, this macromodeling technique will be applied 
to more complex systems and implemented in high level 
language, i.e., VHDL-AMS to achieve speed up as at system 
level. 
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