
Survey and Evaluation of Automated Model Generation
Techniques for High Level Modeling and High Level
Fault Modeling

Likun Xia & Muhammad Umer Farooq & Ian M. Bell &
Fawnizu Azmadi Hussin & Aamir Saeed Malik

Received: 2 June 2012 /Accepted: 29 July 2013
# Springer Science+Business Media New York 2013

Abstract It is known that automated model generation
(AMG) techniques for linear systems are sufficiently mature
to handle linear systems during high level modeling (HLM).
Other AMG techniques have been developed for various
levels of nonlinear behavior and to focus on specific issues
such as high level fault modeling (HLFM). However, no
single nonlinear AMG technique exists which can be confi-
dently adapted for any nonlinear system. In this paper, a
survey on AMG techniques over the last two decades is
conducted. The techniques are classified into two main areas:
system identification (SI) based AMG and model order reduc-
tion (MOR) based AMG. Overall, the survey reveals that
more advanced research for AMG techniques is required to
handle strongly nonlinear systems during HLFM.

Keywords Automatedmodel generation . High level
modeling . High level fault modeling .Model order reduction
and system identification

1 Introduction

Rapid reduction in the feature size of silicon chips allows
designers to encapsulate more complex mixed signal designs
into a single chip. Verification and testing prior to fabrication
of Integrated Circuits (ICs) becomes more challenging due to
their size and complexity. Analogue testing is considered to be
time intensive and expensive in the development of analog

and mixed signals (AMS) ICs [1, 3]. For digital circuits
mature testing and verification methodologies are already
available, but there is still a long way to go for analog or
mixed signal circuits and systems. It is necessary to take into
account low level details of analog circuits for testing but the
generic abstractions available for digital (e.g. stuck-at and
delay faults) are not applicable.

An efficient approach for verifying complex circuit is to
replace the original with a much simpler ‘model’ that is able to
replicate the exact input–output characteristics. The model
may be a mathematical description of the original circuit given
in the form of Differential Algebraic Equations (DAE) that
can be easily translated into Hardware Description Languages
(HDL) such as VHDL-AMS or Verilog-AMS, or even in
SPICE sub-circuits. Verification with this model-based system
can be achieved more rapidly than using the original system.

The model can be obtained either manually or automatical-
ly. For the former, extraction of all required parameters and
building the model is a tedious job. Therefore, it is desirable to
use Automated Model Generation (AMG). These techniques
are bases on DAEs together with computational methods that
automatically generate the equivalent model of the presented
circuit.

A fundamental decision in selection of an AMG approach
is to choose the right model structure. These model structures
are selected according to the type of the system being ana-
lyzed. The main system types are [67]: Linear Time Invariant
(LTI), Linear Time Varying (LTV), Nonlinear Time Invariant
(NLTI) and Nonlinear Time Varying (NLTV). Most electrical
circuits fall into two major categories, i.e., LTI and Nonlinear
(NL). A class of circuits includes RF mixers, switching ca-
pacitors, sampling circuits, etc. fall under the LTV category.
Very few techniques are available for direct LTV modeling,
however, LTV systems may be converted into nonlinear
models and handled using nonlinear techniques [26, 64, 66].

Figure 1 illustrates the taxonomy of various AMG tech-
niques in pyramid form. It is categorized as System
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Identification (SI) and Model Order Reduction (MOR) based
AMG techniques.

This paper surveys AMG techniques for High Level
Modeling (HLM) and High Level Fault Modeling (HLFM)
and the related issue of Fault Propagation (FP). The basic
definition of HLM and HLFM used here is: faulty or fault
free (FF) models generated by an AMG and implemented
using an HDL for system level simulations and which ideally
achieve speedup over full transistor level models. FP for
analog circuits is defined as: the phenomenon by which a
faulty behavior propagates from a faulty block to and through
a FF block of circuit. Sometimes FP forces the FF block into
highly nonlinear regions of operation which may mean that
the FF model is inadequate to propagate faulty behavior. In
such circumstances, the FF model may need to be changed so
that it can accurately propagate the faulty behavior.

The remainder of this paper is organized as follows: in
Section 2 the types of systems and hierarchy of AMG tech-
niques are introduced. SI based AMG techniques are surveyed
in Section 3. Section 4 introduces MOR based AMG tech-
niques. Conclusions are provided in Section 5.

2 System Types and Hierarchy of AMG Techniques

2.1 Linear Time Invariant (LTI) System

LTI systems are widely used in electronics design and the
AMG techniques developed for them are mature [28, 69]. The
basic structure of a LTI block for mixed signal circuits in
illustrated in Fig. 2, where u(t) and y(t) represent inputs, and
outputs to the system in the time domain, respectively. Corre-
spondingly,U(s) and Y(s) represent u(t) and y(t) in the Laplace

domain.AnLTIsystemcanbecharacterizedby theconvolution
of the input with an impulse response h(t) in the time-domain,
i.e., y(t)=x(t)*h(t), which transforms in the frequency/Laplace
domain into a multiplication relationship, i.e., Y(s)=X(s)H(s).
The input–output relationship can be expressed by partial dif-
ferential equations (PDEs) or ordinary differential equations
(ODEs). These models can be implemented using HDLs. Ex-
amples of LTI systems include RLC interconnects circuits
generated by parasitic extractors of digital circuits and linear
amplifiers, etc.

2.2 Linear Time Varying (LTV) System

LTV systems are used in practice because most real-world
systems are time-varying as a result of system parameters
changing as a function of time. LTV systems can be described
by impulse responses in the time domain or transfer functions
in the frequency/Laplace domain. The main difference be-
tween LTVand LTI systems is that, for an LTV system it does
not necessarily follow that, if there is a time-shift in the input,
the same time-shift also occurs in output, as happens in LTI
systems. The basic structure of an LTV system is depicted in
Fig. 3, where u(t) and y(t) represent the inputs and outputs of
the system in the time domain, respectively. U(s) and Y(s) are
the corresponding signals in the Laplace domain.

LTV systems are able to efficiently model variations with
time using the state-space (ss) form and thus the modeling of
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Fig. 1 Classification of AMG
techniques

Impulse response h(t)
ODEs/PDEs

Transfer function H(s)

u(t)/U(s) y(t)/Y(s)

Fig. 2 Linear Time Invariant (LTI) block [67]
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LTV systems can be formulated as problems of nonlinear
systems which obey the scalability property, but do not obey
the time shift property. More details on nonlinear systems are
given in the next subsection. Examples of LTV systems may
include RFmixers, switched capacitors, and sampling circuits.

2.3 Nonlinear Systems

Essentially circuits that contain semiconductor devices are
nonlinear, most obviously for devices such as diodes and
silicon controlled rectifiers where the I-V characteristics change
abruptly. Transistors can be modeled as linear devices for small
signals, but for large signals they are significantly nonlinear. It
follows that active circuits can be designed for close to linear
operation within certain limits; however, nonlinearity is specif-
ically required in other situations such as switching functions.

When manually modeling for purely functional circuit
simulation, it is possible to take some expected nonlinearities,
such as switching, clipping and slewing, into account, creating
elements of the model to account for these effects. This
approach is established in manual macromodel development,
but suffers from the likelihood of missing important nonlinear
characteristics which were not predicted by the modeler.
AMG has the potential to overcome this issue [67] Significant
effort has been put during the last decade for nonlinear AMG,
but the majority of these techniques such as [8, 17, 24, 55, 69]
are application specific.

In the context of fault modeling, the case for AMG is still
stronger because of the modeler is unlikely to have full
knowledge of all nonlinearities created by fault conditions
and thus faces a near impossible task in hand crafting a model
to cover both the nonlinearities in the original circuit and those
introduced or modified by faults. However, hand-written be-
havioral fault models for specific components such as opera-
tional amplifiers [41, 63] have been developed. These cover a
limited range of faults and operating conditions.

Nonlinear circuits, whether faulty or fault free, can be
divided into weakly nonlinear and strongly nonlinear circuits
[67]. In fact the idea of dividing nonlinear system models into
weakly and strongly nonlinear classes or categories is consid-
ered useful in a wide range of disciplines including environ-
mental modeling, fluidics and mechanical engineering. Such
classifications tend to be domain and problem specific; there is
no single global definition of the boundary between weak and
strong nonlinearity. This is directly related to the fact that
currently there is not only no comprehensive modeling tech-
nique for nonlinear systems in general, but no such singular

approach exists even within the more limited context of elec-
tronic circuits. Roychowdhury [67] provides some discussion
of this problem with respect to automated macromodel
generation.

In the context of circuit modeling we can approach this
classification in terms of the expected behavior of circuits; for
example amplifiers are expected to be linear, at least until their
compression or clipping points, whereas comparators are
strongly nonlinear even when considering idealized cases.
Further examples of strongly nonlinear circuits include other
functions such digital logic gates, switches, analog-to-digital
converters (ADC), and digital-to-analog converters (DAC),
where rapid switching occurs between two or more states.
Complex mixed-signal subsystems such as PLLs also exhibit
strong nonlinearities.

Alternatively, the classification can be made in terms of
the mathematical techniques required to deliver models of
reasonable accuracy. It is generally agreed that if system
nonlinear response can be captured through single low order
mathematical model, the system can be classified as weakly
nonlinear. Example of such methods is linearization tech-
niques or methods model using simple nonlinear approxima-
tion methods such as Taylor and Volterra series [67]. On the
other hand, strongly nonlinear circuits cannot be modeled
based on simple series approaches because the useful infor-
mation occurs only in low order derivatives, but strong
nonlinear effects exist in high order derivatives [69].

3 System Identification Based AMG

SI is the art and science of generating mathematical models
from the descriptions of a dynamical system [48]. In general,
SI AMG methods generate models following three major
steps:

1. Collect data, either from experimentation or simulation of
the original system; dividing the data into two parts, one
for model generation and the other for model verification.

2. Choose a model set.
3. Pick the ‘best’ model from the set.

It is quite likely that the first model obtained will not pass
model validation tests. In which case the identification process
in continued until the model is validated [4, 34, 48]. Success-
ful model generation requires suitable stimulus inputs that can
excite all the possible states of the system.

SI AMG approaches are generally categorized as either
parametric or non-parametric. The former assumes a model
structure a priori. This model structure can be an ss model,
system difference equation or transfer function model. Non-
parametric methods generate impulse or frequency response
models directly from the given input/output data. They do not
assume a model structure a priori. The model structure is

Impulse response h(t,tau)
T-V ODEs/PDEs

Transfer function H(t,s)1

u(t)/U(s) y(t)/Y(s)

Fig. 3 Linear Time Varying (LTV) block (Nonlinear Systems) [67]
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obtained during the identification process. However, “non-
parametric” does not indicate that the methods do not involve
any parameters. The only difference from parametric methods
is that the number of parameters and their characteristics are
not known in advance and are adjusted during the identifica-
tion process. In this paper, only parametric AMG approaches
are discussed.

3.1 SI Based AMG Approaches for Linear Systems

A number of successful techniques have been developed to
generate models for linear systems in the time or frequency
domain, using iterative and non-iterative identification
schemes, e.g., [32, 61, 75]. The basis of this success is the
ease of exploration of the mathematical structures for linear
systems. Generally these models provide enormous insight
into a system; however, the assumption that the underlying
physical process exhibits qualitatively similar dynamic behav-
ior to the linear model is often only valid close to the operating
point at which the model was generated.

A linear system model can be represented in a number of
ways, for example, difference equations, ss models or poly-
nomials. Consider a discrete time linear system is defined
using the Eq. (1), where, u(t) and y(t) are input and output of
the system, respectively, G(q) is the system transfer function
obtained by two polynomials B(q) and F(q), e(t) is additive
white noise whose dynamics are described by H(q) that is
obtained from two polynomials C(q) and D(q) and q is the
time-shift operator.

y tð Þ ¼ G qð Þu tð Þ þ H qð Þe tð Þ ð1Þ

Conventionally discrete time systems are represented using
z-transform and delays in difference equations are represented
using with z-1 operator. However, to keep the notations com-
pact a time-shift q operator is introduced to represent delay or
advance in time. A delay, e.g., for input, is represented by
u(t-1)=q-1u(t) and is called backward shift operator (q-1).
Similarly, an advance in time is represented by u(t+1)=qu(t)
and is called forward shift operator (q) [47]. A family of
transfer function models can be obtained by varying the
polynomial coefficients A, B, C, D and F of Eq. (2) [56].

A qð Þy tð Þ ¼ B qð Þ
F qð Þ u tð Þ þ C qð Þ

D qð Þ e tð Þ ð2Þ

These polynomials determine whether the dynamics of the
system G(q) and the noise H(q) will have common poles A(q)
or separate poles F(q) and D(q), respectively. Examples of
model structures from Eq. (2) using different polynomial
combinations include ARX, ARMAX, RARMAX, OE (out-
put error) and BJ (Box-Jenkins) models [12, 15, 37, 49]. In

order to estimate the coefficients of these models, different
algorithms are used such as the lookup table based approach
[89], radial basis functions (RBF) [46], artificial neural net-
works (ANN) [30] and its derivatives such as fuzzy logic (FL)
[77], neuro-fuzzy network (NF) [88], and regression [74].
Regression based approaches can further employ least squares
and recursive algorithms such as least square estimator (LSE),
weighted least square estimator, recursive least square estima-
tor and recursive maximum likelihood (RML) [47].

These SI based AMG techniques for linear systems are the
most mature techniques for obtaining the exact system model
for control systems, bio-engineering, system vision and image
processing. However, most physical mechanisms of real sys-
tems exist in continuous time than in discrete time. This leads
to the representation of linear systems in the ss form, in which,
relationships between the input, noise, and output are written
as a system of first-order differential equations using an aux-
iliary state vector x(t), depicted in Eq. (3).

x tð Þ ¼ Ax tð Þ þ Bu tð Þ þ w tð Þ
y tð Þ ¼ Cx tð Þ þ v tð Þ ð3Þ

A and B are n×n and n×m matrices of the n-dimensional
state and m-dimensional input, C is a p×n matrix of the p-
dimensional output, w(t) and v(t) are assumed to be sequences
of independent random variables of zero mean. Matrices A, B
and C can be obtained using subspace ss system identification
(N4SID) or parametric estimation method (PEM). The model-
ing is carried out in terms of state variable x that has physical
significance (positions, velocities, voltage, currents, etc.), then
the measured outputs are the combinations of the states. A
major advantage of representing linear systems using Eq. (3)
is that physical mechanisms of electrical systems (voltages,
currents etc.) can be more easily incorporated than with
models based on Eq. (2).Moreover, ss modelsMIMO systems
more efficient than transfer function models [47].

Incorporating more system insight details in an ss model
raises the model order, producing computational overhead. It
is usually necessary to generate low order ss models for
complex larger systems to increase simulation speed. In such
situations MOR techniques are employed for linear systems,
which are discussed further in Section 4.

Both rational transfer function and ss based SI techniques
for AMG are not yet exhaustively tested for electronic circuit
blocks. One can generate models using these techniques to
increase the simulation speed by performing HLM. A sum-
mary of SI based AMG approaches for the linear system is
provided in Table 1.

3.2 SI Based AMG Approaches for Nonlinear Systems

These methods are classified into weakly nonlinear systems
(WNS) and strongly nonlinear system (SNS) according to the
severity of the nonlinear behavior of circuits.

J Electron Test



3.2.1 SI Based AMG for WNS

Transfer function modeling techniques of linear systems can be
extended for AMG of WNS. One example is nonlinear ARX
(NLARX) [47], whose model structure is shown in Eq. (4).

y tð Þ ¼ F y t−1ð Þ;…; y t−nað Þ; u tð Þ; u t−1ð Þ;…; u t−nbð Þð Þ ð4Þ

The function F depends on a finite number of previous
inputs u and outputs y. na, nb represent the number of delayed
output and input values that are used for the prediction of the
current output. The model structure is shown in block form in
Fig. 4. F is a nonlinear function and the inputs to F are model
regressors, composed of delayed input and output values,
u(t),u(t−1),…,u(t−nb)y(t−1),…,y(t−na).

The first block in Fig. 4 is a regressor block that computes
the regressor on the basis of the current and past input and
output values. The second block is a nonlinearity estimator. It
implements two functions: a linear function and a nonlinear
function. The outputs from the regressor block are mapped to
the model output y using these functions. The combined
function F(x) implemented by nonlinearity estimator is shown
in Eq. (5).

F xð Þ ¼ LT x−rð Þ þ d þ g Q x−rð Þð Þ ð5Þ

where x is a regressor vector, LT(x)is the output of the linear
function block and g(Q(x−r)) is the output of nonlinear func-
tion block. Examples of nonlinear estimators used in the
nonlinear function block include sigmoid networks, tree par-
titions, wavelet networks and neural networks (NN) [47].

Another approach to decomposing a system into linear and
nonlinear functions involves the dynamics of the system being
controlled through linear functions, with the nonlinear behav-
ior captured through functions consuming the inputs and
outputs of a linear block. The Hammerstein-Wiener (H-W)
model [35] shown in Fig. 5 is an example of this configura-
tion. Nonlinearity in both input and output is treated in sepa-
rate blocks with a linear block connecting them.

where

& Block 1 implements nonlinear function ( f ) on input u(t)
and generates output w(t);

& Block 2 implements a linear transfer function between
nonlinear input w(t) and linear output x(t);

& Block 3 implements nonlinear function (h) and generates
nonlinear output y(t) by consuming inputs x(t)from linear
block.

As the block 1 takes care of nonlinearities in input, the
function f is called the input nonlinearity. Similarly, function h
(block 3) is called the output nonlinearity. If the model struc-
ture contains only block 1 for nonlinearity, i.e., treating non-
linearities only in input, then it is called aHammersteinmodel.
It is aWienermodel if the model structure treats nonlinearities
only in the output. The combination of both nonlinearities in a
single model is called an H-W model. Several algorithms are
available for nonlinearity estimators f and h, such as piecewise
linear, one layer, sigmoid network, wavelet network, satura-
tion and dead zone [47].

The partitioning of a nonlinear system in to linear and
nonlinear blocks in an H-W model generates better output than
the NLARXmodel [11]. Unfortunately, due to lack of feedback,

Table 1 SI based AMG
approaches for linear systems Technique Advantages Disadvantages

Rational transfer
function methods

Mature and stable techniques Model order increase drastically for larger
systems

Not available for MIMO systems

ss methods Efficient for MIMO systems Computational overhead for larger circuits
as order of model (value of internal state
variable) increases with circuit size

Model provides more insight
details of the original system

Regressors
u(t), u(t-1),y(t-1),...

Nonlinear
Function

Linear Function

u

y

Nonlinearity EstimatorFig. 4 NLARX model structure,
see Eq. (4) [35]
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the model may become unstable for larger systems. An inherent
shortcoming in this model structure is that an H-W model
considers nonlinearity as a “static” characteristic of a system,
which is usually the case with control systems. However, in
modern mixed signal electronic circuits, nonlinear behavior is
highly dynamic (nonlinearity changeswith time), e.g., nonlinear
effects generated by cross talk, noise, and intermodulation
phenomena. H-W model can also be evaluated in the context
of HLFM and FP, but similar results to those from NLARX can
be expected from the H-W model. The H-W model is also
discrete time and uses the same nonlinear functions, such as
sigmoidnet, wavenet etc., for nonlinearity estimation.

To deal with dynamical nonlinear behavior, Simeu et al.
[74] propose another approach termed as Situation Dependent
ARX (SDARX) model, which extends the idea of the general
nonlinear ARX (NARX) presented in Eq. (6), by adding
situation dependent coefficients in the regressor term γ(t) of
the model, shown in Eq. (7), where, ϕo γ tð Þð Þ;ϕy

i γ tð Þð Þ 1≤ i≤ny
��

and ϕu
i γ tð Þð Þ 1≤ i≤nuj are the data dependant coefficients of the

model.

y tð Þ ¼ f y t−1ð Þ;…; y t−nð Þ; u t−1ð Þ;…; u t−nuð Þð Þ þ v tð Þ
¼ f γ tð Þð Þ þ v tð Þ ð6Þ

A Radial Basis Function (RBF) method is used to estimate
these situation dependent coefficients. The main idea of the
SDARX approach is to divide the parameter search space into
two subspaces: linear weight subspace and nonlinear param-
eter subspace.

y tð Þ ¼ ϕo γ tð Þð Þ þ
X
i¼1

ny

ϕy
i γ tð Þð Þy t−ið Þþ

X
i¼1

nu

ϕu
i γ tð Þð Þu t−ið Þ

þ ε tð Þ ð7Þ

Then a search is made for the best model from these search
spaces, by applying optimization techniques to achieve accu-
rate results. To avoid computational overhead, optimization is
applied only to the linear subspace. SDARX models weak
dynamical nonlinear behavior with good accuracy. Unfortu-
nately, this approach is computationally complex and hence
may become unsuitable for HLFM, as it may not be able to
increase HLFS speed. In addition the SDARX model is only
applicable to SISO systems.

The techniques for WNS discussed above do not guarantee
preservation of stability in the reduced model. Megretski et al.
[51] propose a H-W feedback model and enforced stability
constraints during the optimization process. A non-parametric
method is used for nonlinear estimation which is implemented
in MATLAB. This AMG approach can become computation-
ally expensive while performing HLFM, as model parameters
are not known in advance and need to be refined during the
identification process. Performing HLFM based on this ap-
proach can severely affect the HLFS speed.

All the nonlinear SI techniques mentioned above are cate-
gorized as weakly nonlinear AMGs as they are only able to
capture less severely nonlinear behaviours. More powerful
identification techniques are required that can capture strong
nonlinear effects. SI based AMG approaches for WNS
discussed in this section are summarized in Table 2.

3.2.2 SI Based AMG for SNS

There are several techniques available for SI based AMG for
SNS. Two recently proposed techniques are discussed: Com-
pact Modeling (CM) [11] and Multiple Model Generation
System using Delta operator (MMGSD) [87].

CMmodeling technique is primarily proposed to overcome
the system instability problems faced in MOR based AMG
techniques for SNS. In CM, the model identification proce-
dure is based on minimizing the model error over a given
training data set subject to an incremental stability constraint,
which is formulated as a semidefinite optimization problem
[11]. Initially the system of implicit form seen in Eq. (8) is
linearized to get a linearized output error upper bound r over
the training data set X,

F v t½ �;…; v t−m½ �; u t½ �;…; u t−k½ �ð Þ ¼ 0;G y t½ �; v t½ �ð Þ ¼ 0 ð8Þ

where v[t] ∈ RN is a vector of internal variables, y[t] ∈ RNy is
the output, u[t] ∈ RNu is the input, F ∈ RN is a dynamical
relationship between the internal variables and the input, and
G ∈ RNy is the static relationship between internal variables
and output. Then a stability constraint is enforced on the
system through the use of a storage function H.

The formulations that enforce both stability and accuracy
on the linearized output error upper bound r at the same time
are shown in Eq. (9).

Input Nonlinearity
(f)

Linear Block
Output Nonlinearity

(h)

u(t) w(t) x(t) y(t)

Fig. 5 Hammerstein-Wiener
model [35]
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minr;F;G;H
X

trt subject to rt þ 2δTo Ft Δð Þ þ 2ξTGt δo; ξð Þ
− ξj j2 þ ht−1 Δ−ð Þ−ht Δþð Þ≥0 ∀t;Δ; ξ ð9Þ

where rt output error upper bound is a function of training
data set eX t½ � ¼ ey t½ �; eV t½ �; eU t½ �

� �
given by rt ¼ r ey t½ �; eV t½ �; eU t½ �

� �
; F

and G are dynamical and static relationships of input
and outputs represented respectively by Ft Δð Þ ¼ F eV t½ �;

�
eU t½ �;ΔÞ; Gt ¼ G ey t½ �;ev t½ �; δo; ξð Þ , Δ and ξ represents the
incremental variables used for incremental stability. ht is
the storage function that depends on internal state eV and
incremental variable Δ, given by ht−1 Δ−ð Þ ¼ hðeV−;Δ−Þ , and
ht Δþð Þ ¼ hðeV−;Δ−Þ [11].

All functions F, G, H and r in Eq. (9) are unknowns.
Estimation of these unknowns can be treated as an optimiza-
tion problem and can be converted into semidefinite program
(SDP) by allowing the unknown functions F, G, H and r to be
chosen as linear combinations of a finite set of basis function
Ø, given in Eq. (10), where ØF, ØG, ØH, Ør ∈ф, and αF, αG,
αH, αr are the free variables solved through SDP.

F ¼
X

j∈N f α
F
j ϕ

F
j V ;Uð Þ;G ¼

X
j∈Ngα

G
j ϕ

G
j y; voð Þ

H ¼
X

j∈Nhα
H
j ϕ

H
j Vð Þ; r ¼

X
j∈Nrα

r
jϕ

r
j y;V ;Uð Þ ð10Þ

A SDP is a problem whose objective function is linear and
whose constraints require matrices which are positive semi-
definite (PSD) [11]. SDP is a special case of convex optimi-
zation concerned with the optimization of a linear objective
function subject to the constraint that the affine combination
of symmetric matrices is positive semidefinite. Such a con-
straint is nonlinear, or not smooth, but convex in nature.
Hence, SDP is considered to be a special case of convex
optimization. A general form of SDP that minimizes a linear
function of a variable x∈Rm subject to a matrix inequality is
shown in Eq. (11), where F(x)≅Fo+∑ i=1

m xiFi

Minimize CTx
Subject to F xð Þ≥0 ð11Þ

The SDP problem data in Eq. (11) are the vectorC∊Rm and
m+1 symmetric matrices F0,…,Fm∈Rn*n. F(x)≥0 means that
F(x) is positive semidefinite, i.e., zTF(x)z≥0 for all z ∈Rn.

The benefit of formulating the optimization problem Eq. (9)
as an SDP in Eq. (11) is that it can be solved efficiently using
readily available software routines [78, 80, 81]. However, the
complexity of the optimization problem in Eq. (9) depends
heavily on the choice of the basis function Ø for the unknowns
F, G, H and r. Therefore, the selection of the basis is critical to
obtain a feasible solution [11]. CM utilizes a polynomial basis
to efficiently solve the optimization problem. This allows CM
to identify a system as a rational model structure. However,
only models that are linear in unknown state variables are
considered. To achieve compactness in the identified rational
model, reduction of states for larger systems are attained
through conventional projection methods and further reduction
of polynomial basis is obtained through a fitting procedure.

The model generated by CM very closely resembles the
original system [10] and guarantees stability in the generated
compact model. For example, in [11] a compact model of a
Micro Electro-Mechanical Systems (MEMS) device of order
400 is generated. Simulation results for its nonlinear behavior
show good accuracy indicating that CM is able to generate
stable reduced models for originally high order systems.

An AMG for SNS targeted at HLFM and HLM has been
proposed by Xia et al. [87]. The algorithm, termed multiple
model generation system (MMGS) consists of two parts: the
AutomatedModel Estimator (AME) and the AutomatedMod-
el Predictor (AMP). The AME implements the model gener-
ation process using Recursive Maximum Likelihood (RML)
[47] method and AMP uses these models to predict signals in
the simulation [86]. The AME comprises three stages: pre-
analysis, estimator and post-analysis. In pre-analysis stage

Table 2 SI based AMG for WNS

Technique Advantages Disadvantages

Nonlinear ARX (NLARX) [47] Feedback model structure System may become unstable and generate unbounded output for
bounded input. Bad estimator for strong nonlinear systems

Unable to perform HLFM and FP accurately

Hammerstein and Wiener (H-W) [47] Parallel combination of linear and
non-linear blocks

Consider nonlinearity as ‘static’ characteristic of system.

Poor estimator of strongly nonlinear systems

Discrete time model structure not suitable for HLFM and FP

H-W model with feedback [51] Very stable W-H model as compared
to previous two approaches

Model structure not suitable for implementation at HLM due
to nonparametric nonlinear approach

SDARX [74] Capture weak nonlinear dynamical as
well as static nonlinearity

Computationally expensive

Poor estimator for strongly nonlinear systems

Available only for SISO systems
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initial conditions of MMGS are setup e.g., input range and the
number of submodels. This step is only performed once in
MMGS. The estimator implements RML and provides output
responses and error measures. The post-analysis step imple-
ments the model generation process.

MMGS produces a new model based on error in different
nonlinear regions against input voltage. The model structure
used by MMGS for these regions is shown in Eq. (12) [86].

y tð Þ ¼ −a1y t−1ð Þ−a2y t−2ð Þ−…anay t−nað Þ þ b1u t−1ð Þ
þ b2u t−2ð Þ þ…bnbu t−nbð Þ ð12Þ

The model is calculated using the linear regression in Eq.
(13), where θ is the parameter vector shown in Eq. (14),φ(t) is
the regression vector displayed in Eq. (15).

y tð Þ ¼ φT tð Þθ ð13Þ

θ ¼ a1a2…anab1b2…bnb½ �T ð14Þ

φT tð Þ ¼ −y t−1ð Þ…−y t−nað Þ u t−1ð Þ…u t−nbð Þ½ � ð15Þ

MMGS generates discrete time models that are able to
accurately model faults for low frequency circuits; however,
these models get contaminated with the effects of aliasing and
severe phase shift for high frequency circuits [85].

The shortcomings in MMGS are improved by introducing
a delta operator (δ) inMMGSmodel structure that leads to the
development of multiple model generation system using delta
operator (MMGSD) which handles nonlinearity over time
[87]. An attractive property of delta operator is that it produces
model coefficients that approximate the discrete time models
as continuous time models.

To present the model structure in continuous time, the
inverse Laplace transform of the transfer function is shown
in Eq. (16) can be used if the sampling interval is sufficiently
short [52]. The resulting equation in time domain with delta
operator can be presented as Eq. (17) [86].

G sð Þ ¼ Y sð Þ
U sð Þ ¼

b0sn þ b1sn−1 þ…bns0

sm þ a1sm−1 þ…ams0
ð16Þ

G δð Þ ¼ y tð Þ
u tð Þ ¼

b0δ
n þ b1δ

n−1 þ…bnδ
0

δm þ a1δ
m−1 þ…amδ

0 ð17Þ

After arranging terms in Eq. (17), the system in Eq. (18) is
obtained.

y tð Þδm ¼ − a1δ
m−1 þ…þ am

� �
y tð Þ

þ b0δ
n þ…þ bnð Þu tð Þ ð18Þ

It is solved using appropriately modified RML using the
delta operator [86]. Unlike in [11, 19, 62], Xia et al. employ
single training data to excite all possible states, by superim-
posing pseudorandom binary sequence (PRBS) signal on a
linear waveform.

In addition, HLM and HLFM are performed by converting
the MMGSD model into a VHDL-AMS model through a
process called multiple model conversion system using a delta
operator (MMCSD). MMCSD loads MMGSD model param-
eters and generates HLM and HLFM implemented in VHDL-
AMS. Accurate simulation results are achieved. Unfortunate-
ly, simulation speed up in HLFS is not achieved compared
with TLFS because of computational overhead in the HDL
simulation. This overhead is mainly due to the fact that the
MMGSD has to switch between multiple models for a single
fault during simulation. Speed can be improved by implemen-
tation of fault collapsing, to prevent repetition of effort, and by
optimising the number of models generated to prevent unnec-
essary model switching from consuming computational effort.
Intelligent setting of thresholds for model switching during
MMGSD may achieve this [21]. Table 3 summarizes AMG
techniques for SNS discussed in this subsection.

Table 3 SI based AMG techniques for SNS systems

Technique Advantages Disadvantages

Compact Modeling [11] Preserve stability for high order systems. The projection based MOR has to be used if higher order
(e.g., 500) model is used, which will result in instability.

Faster model generation. Electronic models generated are not realized at HLM.

Accuracy improved Fault modeling is not implemented

MMGSD [87] Single training data for model generation Simulation speed of HLFM slower than TLFS.

Implemented HLFM and HLFS Fault collapsing not implemented
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4 Model Order Reduction Based AMG

4.1 MOR Based AMG Approaches for Linear Systems

As mentioned earlier in Section 3.1 that the ss form for linear
systems, shown again in Eq. (19), suffers primarily from the
problem of increase in model order for larger systems.

E x
: ¼ Ax tð Þ þ Bu tð Þ

y tð Þ ¼ CTx tð Þ þ Du tð Þ ð19Þ

where x(t)∊Rn is the internal state, u(t)∊Rm and y(t)∊Rp are
the m-input and p-output waveforms. Matrices A∊Rnxn,
E∊Rnxn,B∊Rnxm, and C∊Rpxn are constants.

To practically simulate large size models without compu-
tational overhead, MOR techniques are employed for the
linear systems. However, MOR techniques must produce a
model of lower order whose response matches with original
system response with good accuracy. Also, the reduced model
should maintain the desired properties of the original system
with minimum computational overhead, less memory require-
ments and shortest evaluation time.

There are two types of MOR techniques for linear systems:
projection based and non-projection based techniques. The
latter comprise methods such as Hankel optimal model reduc-
tion [25], singular perturbation method [49], and various
optimization-based methods. Whereas, for the former, the
most widely used general approaches are Proper Orthogonal
Decomposition (POD) methods [7, 42, 43, 84], Krylov-
subspace and shifted Krylov-subspace methods [5, 23, 44,
71], and Balancing-based methods [2, 20, 36].

Model reduction using projection methods is implemented
by projecting the linear equations into a subspace of a lower
dimension. The selection of subspace is based on the approx-
imation of desired properties of original system in the reduced
model. Therefore, a major issue in linear reduced models is
deciding which properties of the original system should be
maintained in reduced model. Several techniques have been
developed for MOR such as moment matching and Asymp-
totic Waveform Evaluation (AWE) [13, 14, 27, 44, 60, 73].
More details on these techniques can be found in [67].

Krylov subspace based model reduction techniques are
considered to be the major milestone in the development of
MOR for linear systems. A Krylov subspace Km(A,p) gener-
ated by a matrix A and vector p, of order m, is the space
spanned by the set of vectors {p,Ap,A2p,…,Am-1p}. The basic
procedure of projection based reduction using Krylov sub-
space is as follows.

Select a matrix V whose columns span a ‘useful’ subspace,
and draw an approximation bx ¼ Vz . To obtain the reduced
model equations and a residual r≡Abxþ Bu−Edbx=dt is calcu-
lated such that r is orthogonal to another spaceW, i.e.WTr=0.
The ss equations for the reduced model come out to be of the
form shown in Eq. (23).

dz

dt
¼ bAzþ bBu;by ¼ bCzþ bDu ð20Þ

where

bA ¼ WTAV ; bB ¼ WTB; bE ¼ WTEV ; bC ¼ CV ð21Þ
Nevertheless, the problem in both AWE and Krylov

methods is that these methods do not guarantee the preserva-
tion of passivity and stability in a reduced model [67]. A
system is passive if it cannot generate energy under any
conditions and stable if its output remains bounded for bound-
ed input [69].

Passivity is mainly the concern of interconnect networks
where multiple nodes are connected to a single node, and
stability is an important property that every reduced model
needs to guarantee. The techniques discussed next mainly
focus on these two goals (and added goals of computational
cost and accuracy).

Several authors have developed different model reduction
techniques on basis of Krylov methods [10, 40, 73]. However,
these techniques either target stability or passivity, but not
both at the same time. Similarly, the authors in [55] use
Arnoldi-based reduction method with the passivity-retaining
properties of the congruence transformation for RLC net-
works. They propose an algorithm dubbed PRIMA (Passive
Reduced Order Interconnect Macromodeling Algorithm). It
generates provably passive reduced-order N-port models for
RLC interconnect circuits. The modified nodal analysis
(MNA) equation is formed using these ports along with
sources in time domain as seen in Eq. (22).

Cx⋅n ¼ −Gxn þ BuN ; iN ¼ LTxn ð22Þ

where vectors iN and uN indicate the port currents and voltages
respectively; C, G are matrices representing the conductance
and susceptance. PRIMA utilizes the Arnoldi algorithm [73]
to produce the vectors required for applying congruence
transformations to the MNA matrices, i.e., V=W. These trans-
formations are used to reduce the order of circuits [40].

The moment-matching properties of Krylov-subspaces en-
able the reduced model to match original model up to the first
q derivatives, where q is the order of the reduced model.
Models from PRIMA are able to improve accuracy compared
with Arnoldi. The model size is grows with the number of
moments (moment is matched by multiplying with the num-
ber of ports) and for large number of ports the algorithm leads
to impractically large models.

The authors of [16, 76] describe techniques which
generate reduced passive models from transfer functions.
However, these approaches are only available for single
port circuits.
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The authors of [29, 31] generate passive models for multi-
port circuits for stable but non-passive multiport systems. They
use a perturbation technique to make the model passive. Unfor-
tunately, these approaches may perform poorly if the original
system has significant passivity violations. Also, these pertur-
bations techniques can severely affect the accuracy of model.
To overcome this problem Zohaib et al. [50] impose the pas-
sivity constraint during the model generation process, unlike
conventional perturbation approacheswhere themodels are first
generated and then perturbed to make them passive. However,
Zohaib et al. only guarantee passivity, not stability.

Another important characteristic of RLC interconnect net-
works is reciprocity which enables the preservation of block
structure of circuit matrices in reduced models. While reci-
procity is related to passivity, some of the passivity preserving
techniques discussed above are unable to preserve reciprocity
in the reduced models. Freund et al. [24] propose a new
algorithm termed structure preserving reduced order intercon-
nect macromodeling (SPRIM), which generates provably pas-
sive and reciprocal models of multiport RLC circuits that
match twice as manymoments compared to the corresponding
model obtained with passivity preserving methods, e.g.,
PRIMA, with identical computational cost.

Krylov-subspace based model reduction techniques are
efficient but they are not optimal in minimizing errors in the
reduced models [59]. This can be achieved by using the theory
of truncated balanced realization, presented for the first time in
[38]. TBR based techniques can be classed as positive-real
TBR (PR-TBR), hybrid TBR and bounded-real TBR (BR-
TBR) [9]. Phillips et al. [9] present an algorithm based on the
input-correlated TBR for parasitic models, which offers ad-
vantages like quantifiable error bounds. They claim that the
size of the parasitic models from projection-like procedures

can be reduced by exploiting input information such as nom-
inal circuit function. This algorithm can generate guaranteed
passive reduced-order models of controllable accuracy for ss
systems with an arbitrary internal structure. Kamon et al. [22]
combines Krylov subspace techniques with TBR methods so
that the size of the TBR is reduced and potentially the com-
putational cost can also be reduced.

All the techniques mentioned above target passivity with
less focus on stability. As already mentioned, projection based
reduction techniques are not optimal in the minimization of
error in reduced models. This error arises due to discretization,
and ignoring high-order physical effects may render the sys-
tem unstable. Thus no projection method is able to reliably
generate accurate stable reduced models from originally un-
stable systems. Bond et al. [65] provides stability-preserving
projection framework for efficient reduction of indefinite and
mildly unstable systems. They generate guaranteed stable
reduced models by formulating a given indefinite and
asymmetric system as a semidefinite optimization prob-
lem. Unlike the conventional method of first applying a
projection method to generate a reduced model and then
perturbing the generated model to enforce stability and
passivity, they perturb one of the projection matrices (U
or V) and search for small ΔU such that the system
defined by bE ¼ U þΔUð ÞTEV ; bA ¼ U þΔUð ÞTAV ; bB ¼
ðU þΔUÞTBV and bC ¼ VTC is passive. The solution
can be found using Eq. (23) [65].

min
ΔU ΔUk kminΔU Subject to bE≥0; bAþ bAT

≤0; bB ¼ bC ð23Þ

For example, through the reduction of aMEMSmodel with
an original order N=1680 to an order q=12, they obtain a

Table 4 MOR base AMG for linear systems

Technique Advantages Disadvantages

AWE [14] Match lower order moments of original with
reduced model

Reduced model numerically inaccurate for N ≥10

Moment matching through Krylov
subspace method [13, 39]

Numerically accurate reduced model then AWE,
able to capture all poles and residues of system

Does not preserve stability and passivity in
reduced model

Co-ordinate transformed Arnoldi
method [73]

Guarantees stability Does not guarantee passivity

PRIMA [55] Preserves passivity Computationally expensive due to large model size

Rational function fitting approach for
passive model generation [29, 31]

Preserves passivity Available only for single port circuits

Perturbation approach for passive
model generation [53, 70]

Preserves passivity for multi-port systems Does not guarantee accuracy

Semidefinite programming approach [8] Preserves passivity for multi-port systems and
guarantees accuracy

Does not guarantee stability

SPRIM [24] Passive and reciprocal models of multiport RLC circuits Does not address stability issue

Truncated Balanced Realization (TBR)
approach [9]

Minimizes error in reduced model compared to Krylov
subspace based methods and preserves passivity

Computational cost grows cubically with original
system’s size

Stability preserving projection
framework using SDP [65]

Guaranteed passivity and stability preservation Model not realised at higher level
Simulation speed up achieved
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stable reduced system with good accuracy. They also show
that their technique is up to 15 times faster than conventional
projection based methods. Unfortunately, MATLAB models
generated by this AMG are not converted into high level
descriptions to show speed up for system level simulations.
Table 4 provides the summary of MOR based AMG for linear
systems in this subsection.

4.2 MOR Based AMG Approaches for LTV Systems

LTI MOR may not be applicable for mixed signal systems
whose behaviour varies with time. Moreover, it is unable to
model behaviours such as distortion and clipping in ampli-
fiers. Therefore, LTV MOR is required. The detailed behav-
iour of the system is described in Eq. (24).

E tð Þ x⋅ ¼ A tð Þx tð Þ þ B tð Þu tð Þ
y tð Þ ¼ C tð ÞT x tð Þ þ D tð Þu tð Þ ð24Þ

Here A, B, C, D and E are time dependant which enables
this model structure to capture variation with time in the
system. It is known that LTI MORmethods cannot be directly
applied to LTV systems due to the variations of system trans-
fer function with time. However, the authors in [82] demon-
strates that the LTV systems can take advantages of LTI
techniques if Eq. (24) can be reformulated into the linear
model structure shown in Eq. (19). They use extra artificial
inputs to capture the variations with time. Then they separate
the input and system time variations explicitly using multiple
time scales [66] in order to obtain an operator expression for
the transfer function H(t,s) shown in Fig. 3 (Section 2). Final-
ly, they apply periodic steady-state methods [40, 73] on the
operator expression to obtain a linear system of form Eq. (12).
Now this linear system can be reduced using LTI MOR
techniques. After the reduction, the linear system is formulat-
ed back into a LTV system of form Eq. (27).

4.3 MOR Based AMG Approaches for Nonlinear Systems

4.3.1 MOR Techniques for WNS

Weakly nonlinear techniques are extensions of linear MOR
techniques [54, 72]. A standard nonlinear system formation is
based on a set of nonlinear differential-algebraic equations
(DAEs) shown in Eq. (25), where x∊Rn, n is the order of
matrices, x(t) represents the state vector, y(t) is the vectors of
outputs, u(t) is the input, q(.) and f(.) are nonlinear vector func-
tions, and b and c are the input and output matrices, respectively.

q⋅ x tð Þð Þ ¼ f x tð Þð Þ þ bu tð Þ
y tð Þ ¼ cTx tð Þ ð25Þ

f(x) and q(x) in Eq. (25) can be approximated using Taylor
series expansion at the bias point x0 as shown in Eq. (26),

where q(x)=x (assumed to make notations simpler), ⊗ is the
Kronecker tensor products operator, and Ai is given as:

Ai ¼ 1

i!

∂i f
∂xi x¼x0j ∈Rn�ni

d

dt
x tð Þð Þ ¼ f x0ð Þ þ A1 x−x0ð Þ þ A2 x−x0ð Þ⊗ x−x0ð Þ

þ⋯Ai x−x0ð Þ ið Þ þ bu tð Þ
y tð Þ ¼ cTx tð Þ

ð26Þ

Volterra series theory [45] and weakly nonlinear perturba-
tion techniques [57] can then be used to justify a relaxation-like
approach for this kind of systems. The Volterra series approach
is effective for describing nonlinear transfer functions of weak-
ly nonlinear systems. By employing Volterra series, response
x(t) in Eq. (26) can be approximated by adding responses at
different orders, i.e., x(t)=∑n=1

∞ xn(t), where xn is the nth-order
response. The linearized first through third order nonlinear
responses in Eq. (26) need to be solved recursively using
Volterra series as shown in Eqs. (27–29).

d

dt
x1 tð Þð Þ ¼ A1x1 þ bu ð27Þ

d

dt
x2 tð Þð Þ ¼ A1x2 þ A2 x1⊗x1ð Þ− d

dt
x1⊗x1ð Þ ð28Þ

d

dt
x3 tð Þð Þ ¼ A1x3 þ 2A2 x1⊗x2ð Þ þ A3 x1⊗x1⊗x1ð Þ

þ d

dt
x1⊗x1⊗x1ð Þ−2 x1⊗x2ð Þ ð29Þ

where x1⊗x2ð Þ ¼ 1
2 x1⊗x2ð Þ þ x2⊗x1ð Þð Þ

The nth-order response can calculated using a Volterra
kernel of order n, hn(τ1,…,τn), as shown in Eq. (30).

xn tð Þ ¼
Z

∞

∞

…

Z
∞

∞

hn τ1;…; τnð Þu t−τ1ð Þ…u t−τnð Þdτ1…dτn

ð30Þ

AVolterra kernel can describe efficiently both the nonlinear
behaviour and dynamics of system through use of convolu-
tion. Volterra kernels are the backbone of any Volterra series.
They contain the knowledge of a system’s behaviour, and
predict the response of the system. Alternatively, moment
matching can be done at multiple frequency points using Eq.
(31), where hn(τ1,…,τn) is transformed into the frequency
domain via Laplace transform.
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Hn s1;…; snð Þ

¼
Z

−∞

∞

…

Z
−∞

∞

hn τ1;…; τnð Þe− s1τ1þ⋯þsnτnð Þdτ1…dτn

ð31Þ

Hn(s1,…,sn) is the nonlinear transfer function of order n.
The nth-order response, xn, can also be related to the input
using Hn(s1,…,sn).

Roychowdhury et al. [82] improve the relaxation approach
by appropriately modifying each stage of the relaxation pro-
cess to account for distortion inputs. They apply a separate
projection basis at each stage to obtain a reduced model. This
achieves accuracy at the cost of increased model size (as the
final model is the sum of each stage, a relaxed q order model).

Li et al. [58] combines and extends Volterra and projection
approaches using a method termed NORM (Nonlinear Model
Order Reduction Method) to achieve reduced model size.
NORM calculates the nonlinear transfer function by explicitly
performing the moment matching through the use of projec-
tionmatrices. The first-order transfer function of the linearized
system is obtained in Eq. (32).

s−A1ð ÞH1 sð Þ ¼ b or H1 sð Þ ¼ s−A1ð Þ−1b ð32Þ

Without loss of generality, Eq. (32) is expanded at the origin
(0, 0) as shown in Eq. (33).

H1 sð Þ ¼
X∞

k¼0
skAkr1 ¼

X∞

k¼0
skM 1;k ð33Þ

This approach can also be useful to obtain the moments of
the second-order or third-order transfer functions. Compared
with existing projection based reduction models, such as [6,
79], it provides a significant reduction in model size.

Batra et al. [33] employ NORM to generate reduced-order
models of circuits from transistor level netlists. The difference
from [58] is that Batra et al. exploit least-mean-square error
(LMSE) fitting techniques to find the 3rd order model coeffi-
cients instead of using the model equations. Results show that

the models generated achieve considerable reduction in the
model size with good accuracy. Unfortunately, speed slow
compared with TLS. In addition the models are not converted
into HDL to show speedup at system level simulations.

The polynomial based techniques mentioned above at-
tempt to linearize the nonlinear part of a system and then
apply model reduction [33, 58, 82]. Other techniques perform
the nonlinear model reduction process using different ap-
proaches by splitting a system into linear and nonlinear parts,
then a reduction technique is applied only to the linear part;
after that the linear part is stitched back with the untreated
nonlinear part to get the overall reduced nonlinear model [68,
83].

Steinbrecher in [68] decouples a circuit into linear and
nonlinear sub-circuits, and then applies passivity-preserving
balanced truncation followed by an adequate re-coupling of
the unchanged nonlinear sub-circuit and the reduced linear
sub-circuit to obtain a nonlinear reduced-order model. He
shows the efficiency of his method numerically with initial
assumption of small number of nonlinear elements. It in-
dicates that this methodology may not be optimised to
circuits containing large number of nonlinear elements.
Heinkenschloss et al. [83] follow the same methodology
of separating the linear and nonlinear parts of circuits.
Again the assumption is that there is small number of
nonlinear resistances in the circuit for the overall method
to be effective.

The MOR based AMG techniques for WNS discussed in
this subsection (summarized in Table 5) are only able to
capture nonlinear effects that lie within low order derivatives
of a system transfer function. However, strong nonlinear
effects often appear in higher order derivatives. Unfortunately
MOR based techniques for WNS are extremely poor estima-
tors for capturing strong nonlinear effects that lie in the high
order derivatives [18].

4.3.2 MOR Techniques for SNS

To overcome the issue above [70], other methods such as
piecewise approximation can be used to achieve better solu-
tions. The simplest approach is to represent a nonlinear system

Table 5 MOR based AMG for WNS

Technique Advantages Disadvantages

Projection base relaxation approach [82] Efficiently handles distortion effects Larger model size

NORM [58] Reduced model size compared with
previous approach

Good for small range of validity, bad global estimator

LMSE with NORM [33] Significantly reduced model for transistor
level circuits

Model simulation speed not compared with TLS

Model not implemented using HDL for HLM

Separate linear, non-linear
treatment [68, 83]

Preserves passivity with good accuracy Reduced linear part, non-linear part is untreated

Applicable only with few nonlinear elements in circuit
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using piecewise linear (PWL) approach. Each small region in
the nonlinear response is readily linearized, and a combination
of these linear pieces can approximate an overall nonlinear
system. However, a major shortcoming is that the number of
pieces (regions) increases drastically for strong nonlinear sys-
tems in order to achieve sufficient accuracy.

To overcome this problem of explosion of regions,
Rewienski et al. [12] developed an approach termed trajectory
piecewise-linear (TPWL). Initially, they select multiple points
along a trajectory in the ss of a nonlinear system, to generate
an equal number of linear approximations. These points are
called “centre points” and are generated using different train-
ing inputs. A model is generated if the current state point x is
‘close enough’ to the last linearized point xi, i.e., ‖x−xi‖<ε,
which means that x lies within a circle of radius of ε and
centred at xi. Each of the linearized models takes the form
shown in Eq. (34), with expansions around states x0,…, xs-1,
where f(.) evaluated at states xi. x0 is the initial state of the
system and Ai are the Jacobians evaluated at xi.

dx

dt
¼ f xið Þ þ Ai x−xið Þ þ Bu ð34Þ

A Krylov subspace projection method is then used to
reduce the complexity of the linear model within each piece-
wise region. Rewienski et al. then combine all s linear models
according to a weighting equation in Eq. (35), where ewi xð Þ
are the weights depending on state x.

dx

dt
¼

X
i¼0

s−1ewi xð Þ f xið Þ þ
X
i¼0

s−1ewi xð ÞAi x−xið Þ þ Bu ð35Þ

Rewienski et al. state that TPWL is more suitable for
circuits that exhibit strong nonlinear effects such as compar-
ators. They also prove that TPWL is more efficient than PWL
with respect to the regions explosion problem. Rewienski
et al. used specific training inputs for macromodel generation,
which implies that macromodel covers only those ss trajecto-
ries that are generated through specific inputs. Such
macromodels may be unable to generate correct responses
for inputs not covered by training stimuli. TPWLmacromodels

are able to model strongly nonlinear systems, but their capabil-
ity to model weak nonlinear systems is limited due to poor
approximation properties of linearized models for higher order
derivatives. Further, the computational cost involved in gener-
ating reduced macromodels for SNS is high. To improve com-
putational cost, Vasileyev et al. [83] introduce a two-step hybrid
reductionmethod called TBR-TPWLmodel reduction. Initially
they reduce the ss matrices using a conventional Krylov sub-
space method and further reduction is achieved through use of
TBR projection. Simulation of macromodels generated using
TPWL-TBR shows better accuracy than models generated
using only the Krylov subspace method. Computational cost
is significantly reduced, but unfortunately it does not guarantee
stability.

Bond et al. [24] improve the local approximation properties
of TPWL by introducing extra parameters in the model struc-
ture. In TPWL, a nonlinear system is approximated by the
model shown in Eq. (36). A parameter space {Pj} is added to
the state trajectory space, shown in Eq. (37).

dbx
dt

¼
Xk¼1

i¼0
wi bx; bX� � bAibx tð Þ þ bkih i

þ bBu tð Þ ð36Þ

dbx
dt

¼
Xk¼1

i¼0

XP−1

j¼0
wi bx; bX� �eP j

bAijbx tð Þ þ bkij þ ebBju tð Þ
� �

ð37Þ

where {Pj} is the additional parameter space in the original ss,
j represents the number of linearization points in parameter
space and k represents the number of linearization points in
full ss.

In TPWL the training inputs generate centre points for
linearization along a ss trajectory; here additional trajectories
are generated by training the system Eq. (38) at several points
in the parameter space ePjn o

.

dx

dt
¼

XP−1

j¼0
ePj f i xð Þ þ Bju tð Þ	 
 ð38Þ

The additional training produces a linear model in new ss,
so that each state is now driven by these parameter variations.
However, the model generation process is computationally

Table 6 MOR based AMG for
SNS Technique Advantages Disadvantages

PWL [70] Handles strongly nonlinear systems. Huge number of linear pieces (regions)

TPWL [12] Reduced number of regions.
Good global estimator

Unable to capture higher-order derivative
information due to PWL nature

NLPMOR [24] Improved accuracy then TPWL
for specific cases

Computationally expensive

PWP [18, 19] Able to capture weakly as well as
strongly nonlinear effects by combining
polynomial approach with TPWL

Used multiple training data.
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expensive. In TPWL, m Krylov vectors are generated from k
linear models to construct a projection matrix. Thus the cost of
generating a projection matrix is O(km). For a system having
P additional parameters, the cost of generating a projection
matrix becomes O(kPm), which is a significant increase.

TPWL and all its variants discussed above can model SNS
with good accuracy, but they have poor approximation prop-
erties for WNS. Therefore Dong et al. [18, 19] proposed a
piecewise polynomial (PWP) extension of TPWL. This is a
combination of polynomial model reduction with the trajec-
tory piecewise linear method. It is able to improve TPWL by
dividing the nonlinear ss into several regions that are approx-
imated with a polynomial model around the centre expansion
point. A training simulation employing DC sweeps can be
used to generate these expansion points. However, a combi-
nation of several training data is used to excite different
operating regions. The resulting model is gradually developed
by introducing new regions until the desired accuracy is
achieved. Firstly a polynomial function is expanded intomany
points, and then simplified through approximation of the
nonlinear functions in each region to obtain much smaller size
models. The resulting models are then combined as a single
model. A scalar weight function is used to ensure fast and flat
switching from one region to another.

One of the major advantages of PWP is that it can model
not only weakly nonlinear effects (such as distortion and inter-
modulation) but also strongly nonlinear system dynamics
(such as clipping and slewing). Moreover, fidelity in large-
swing and large-signal analysis can be retained.

PWP is implemented in [17] for extracting broadly appli-
cable general-purpose macromodels from SPICE netlists in
which the PWP model is able to model different nonlinear
behaviours such as loading effects, simultaneous switching
noise (SSN), crosstalk noise and so on. A simulation speed up
of eight times is reported [18]. The approach is implemented
in the MATLAB environment but it is not established if it can
be used to perform HLFM. Moreover, PWP and TPWL are
the Taylor polynomial based techniques; their models show
their poorer performance (convergence and speedup) as com-
pared with Chebyshev polynomial [21]. MOR techniques for
SNS are summarized in Table 6.

5 Conclusion

In this paper, a survey on available linear and nonlinear AMG
techniques for HLM and HLFM is conducted. The AMG
techniques are categorized into SI based AMG and MOR
based AMG. Overall, the techniques for linear systems are
mature, whereas for nonlinear systems they are strictly case
dependant. In addition, most of these AMG techniques per-
form well in MATLAB environment, but these AMG models
have not all been fully evaluated in a more physical electronics

orientated environment using HDLs such as VHDL-AMS or
Verilog-AMS [87]. Therefore, it may become questionable if
these MATLAB models can achieve same speedup and accu-
racy when implemented at higher level.
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