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ABSTRACT 

A theoretical analysis is presented for transient, fully-developed magnetohydrodynamic free and forced convection 

flow of a viscous, incompressible, Newtonian fluid in a rotating horizontal parallel-plate channel subjected to a 

uniform strength, static, oblique magnetic field acting at an angle   to the positive direction of the axis of rotation. A 

constant pressure gradient is imposed along the longitudinal axis of the channel. Magnetic Reynolds number is 

sufficiently small to negate the effects of magnetic induction. The channel plates are electrically non-conducting. The 

conservation equations are formulated in an (x,y,z) coordinate system and normalized using appropriate 

transformations. The resulting non-dimensional coupled ordinary differential equations for primary and secondary 

velocity components and transformed boundary conditions are found to be reciprocal of the Ekman number ( 2K = 

1/Ek), non-dimensional pressure gradient parameter (Px), Hartmann number ( 2M ), Grashof number (Gr), magnetic 

field inclination () and oscillation frequency (). Complex variables are employed to solve the two-point boundary 

value problem. A steady state resonance of the velocity field is identified for   2/144416
2

1
 SinMK  . 

Furthermore the solutions indicate that the condition  
1/2

4 4 41
cos 16

2
T K M Sin    signifies an oscillatory 

turbulent dynamo mechanism. A critical Grashof number (Grcx) is also evaluated for which primary flow reversal 

arises at the upper channel plate. A similar criterion for Grashof number (Grcy) is established for the onset of 

secondary flow reversal at the upper plate. A detailed assessment of the influence of the control parameters on 

primary and secondary velocity evolution in the channel is also conducted. The model finds applications in MHD 

(Magneto Hydro Dynamic) energy generators and also magnetic materials processing systems.  

 

Keywords: Magnetohydrodynamics (MHD), Free and forced thermal convection, Critical Grashof number, 

Rotation, Resonance, Complex variables solutions, Oblique magnetic field, MHD energy generators. 

 

 

1. INTRODUCTION 

MagnetoHydroDynamic (MHD) flows with and 

without heat transfer, arise in numerous areas of 

engineering and applied physics.  A prominent area 

of focus is MHD energy generator flows which 

include disk systems (Yamasaki et al. (1988)), solar 

pond hydromagnetic generators (Kabakov and 

Yantovsky 1993) and magneto-thermo-acoustic 

generators (Vogin and Alemany 2006). Other 

applications arise in hypersonic ionized boundary 

layers (Macheret et al. 2004), particle deposition in 

electrically-conducting systems (Zueco et al. 2009) 

and liquid metal processing (Bég et al. 2009). In 

numerous hydromagnetic flows, rotation may also 

take place and the centrifugal forces can exert a 

significant effect on flow dynamics and heat transfer 

processes. Elco et al. (1962) studied analytically the 

characteristics of rotating flow in the radial vortex 

magneto-gas dynamic generator system. Yantovskiy 

and Tolmach (1963) investigated centrifugal force 

effects on rotating hydromagnetic generator 

configurations.  Michiyoshi and Numano (1967) 

investigated the performance characteristics of the 
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vortex MHD power generator using a partially 

ionized gas as a working fluid, showing that 

compressibility of the working fluid causes a much 

sharper decline of the radial velocity in the radial 

direction than in the case of an incompressible fluid 

at subsonic speeds. Further interesting studies of 

transient rotating hydromagnetic flow were reported 

by Katsurai (1972) and Oliver (1974). Lenzo et al 

(1978) studied experimentally the rotating-drum type 

separator in closed-cycle two-phase- MHD generator 

flow. power systems,. showing that a stable liquid 

film is formed on the drum and that the kinetic 

energy of the liquid layer is sufficient to be 

potentially useful in such energy generation systems. 

Thiagarajan and Rogthai (1977) analyzed the 

collisional plasma flow confined between co-axial 

cylindrical electrodes and rotating under crossed 

electric and magnetic fields, for the diffuse discharge 

regime, using 2-species MHD momentum equations, 

including Lorentz, pressure, centrifugal, Coriolis and 

collisional forces, with applications in MHD disk 

generators, isotope separation and plasma 

diagnostics. They found that retrograde motion (in 

part or whole of the annulus) arises over a range of 

magnetic fields for current flowing radially inward.    

A number of mathematical and numerical studies of 

transient and rotating hydromagnetic flows have also 

appeared, employing a wide spectrum of analytical 

and computational methods. For example, oscillatory 

hydromagnetic flow in a continuous electrode 

Faraday generator was studied by Ibáñez et al. 

(2002), who also considered optimization aspects and 

derived generator efficiencies.  Takhar et al. (1993) 

studied unsteady hydromagnetic flow of a dusty 

viscous liquid in a rotating channel with Hall currents 

and heat transfer, obtaining exact solutions and 

studying in detail the effect of Hartmann number and 

Strouhal number on the velocity evolution in the 

channel. Bég et al. (2010) used network simulation to 

study the radial, tangential and axial velocity fields 

and heat transfer in magneto-hydrodynamic flow 

from a spinning disk with thermal radiation and wall 

slip effects.  Bég and Ghosh (2010) used complex 

variables to study the combined effects of thermal 

radiation and oscillating temperature on unsteady 

hydromagnetic boundary layer flow from a flat plate. 

Seth et al. (2010) used the Laplace transform 

technique to investigate transient rotating 

hydromagnetic Couette flow in a parallel porous plate 

channel, with flow induced due to the impulsive 

movement of the one of the plates of the channel. The 

plates of the channel are considered porous and the 

magnetic field. Asymptotic behavior of the solution 

was analyzed for small as well as large values of time 

and it was found that  suction decelerates the primary 

as well as secondary flow where as injection and time 

have accelerating influence on the primary and 

secondary flows. Hayat et al. (2007) investigated 

Hall current magneto-hydrodynamics in rotating 

oscillating flows of a non-Newtonian fluid in a 

porous medium. Zueco and Bég (2010) used network 

simulation to study the transient magneto-elasto-

hydrodynamic squeezing film flow between parallel 

rotating disks with magnetic induction effects. Ghosh 

and Bhattacharjee (2000) reported exact solutions for 

combined forced and free thermal convection 

hydromagnetic flow in rotating parallel plate channel 

with perfectly conducting walls, showing that shear 

stresses at the walls decrease with the increase in 

both the inverse Ekman number and Hartmann 

number squared and that the heat transfer rates at 

both walls decrease with the increase in the Grashof 

(free convection) number. Naroua et al. (2007) 

applied the finite element method to simulate 

unsteady magneto-hydrodynamic heat-generating 

free convection flow of a rotating partially-ionized 

gas past an infinite vertical porous plate with Hall 

and ion-slip current effects. They found that  primary 

velocity profile  decreases with a rise  in the Hall 

parameter and the ionslip parameter, but is escalated 

with  time for positive Grashof numbers (cooling of 

the plate by free convection currents) and decreases 

with time for negative Grashof numbers (heating of 

the plate by free convection currents). Secondary 

velocity profile was shown to be depressed with 

rising Hall parameter and ionslip parameter but 

elevated with increasing time and stronger rotation. 

Temperature profile was also shown to be boosted  

with a rise in the heat generating parameter and also 

with time. Ghosh et al. (2009) obtained analytical 

solutions for transient rotating magnetohydrodynamic 

free convection from a vertical surface embedded in a 

liquid-metal saturated Darcian porous medium. They 

considered both cases of heating of the plate by free 

convection currents (negative Grashof number) and 

cooling of the plate by free convection currents 

(positive Grashof number). Rawat et al. (2009) used a 

variational finite element scheme to numerically 

simulate the laminar, fully developed, transient MHD 

free convection heat and mass transfer of a 

conducting micropolar fluid between two vertical 

plates containing a non-Darcy porous medium. 

Strong deceleration of the flow with increasing 

magnetic field strength was established and also an 

accentuation of temperatures and concentration 

values of the dispersing agent indentified in the 

regime for strong magnetic fields. Ghosh et al.  

(2009) obtained both closed-form and asymptotic 

solutions for steady magnetohydrodynamic thermal 

convection in a spinning parallel plate channel 

system with perfectly conducting walls, Hall currents, 

magnetic induction and a static transverse uniform 

magnetic field. Joule (Ohmic) dissipation and viscous 

heating effects were also incorporated in the model. 

Boundary layers were identified to arise close to the 

channel walls for strong rotation of the channel. For 

slowly rotating systems, Hall current parameter was 

found to reduce primary mass flow rate. For constant 

values of the rotation parameter (inverse Ekman 

number), heat transfer rate at both plates was found to 

exhibit an oscillatory pattern with an increase in Hall 

current parameter. Bhargava et al. (2009) 

investigated the periodic reactive hydromagnetic free 

convection velocity, thermal and species diffusion 

boundary layers along a plate embedded in a porous 

medium with Soret and Dufour effects using an 

optimized variational finite element code. They 

showed that velocity is reduced with increasing 

magnetic parameter, whereas a rise increase in Eckert 

number (dissipation parameter) elevates temperature. 

Furthermore it was found that increasing chemical 
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reaction parameter enhanced velocity, temperature 

and also concentration value, and that temperature 

was increased considerably with decreasing Soret 

number and simultaneous increasing Dufour number. 

Ghosh et al. (2009) derived exact solutions for the 

steady magnetohydrodynamic (MHD) rotating 

viscous convective flow of an optically-thin gas with 

thermal radiation and induced pressure gradient using 

the Laplace transform method. Both primary and 

secondary velocities were shown to increase with 

increasing rotation. An increase in Grashof number 

depressed both primary velocity and secondary 

velocity with significant backflow arising. Increasing 

magnetic field strength caused a deceleration in both 

the primary and secondary flow fields. Hayat et al. 

(2004) studied transient rotating MHD flow of a 

viscoelastic fluid analytically showing that a steady 

asymptotic hydromagnetic solution exists for blowing 

and resonance. 

The above studies have all considered the case of a 

transverse magnetic field i.e. a magnetic field acting 

perpendicular to the principal flow direction. In many 

applications including astrophysics, MHD power 

generation and magnetic materials processing flow 

control, magnetic fields may act obliquely to the 

flow. Relatively few studies of inclined magnetic 

field effects on hydromagnetic transport phenomena 

have been presented.  Several important studies have 

however been communicated in the past decade or so 

including Seth and Ghosh (1986) and Ghosh (1991). 

Ghosh (1996, 1997) considered the oblique magnetic 

field influence on MHD flow in a spinning channel  

in the presence of an oscillator. Ghosh (1999) also 

considered Hall effects on unsteady rotating channel 

hydromagnetics under an oblique magnetic field in 

the presence of an oscillator. Further analytical 

studies of such flows were described in Ghosh and 

Bhattacharjee (2000), Ghosh (2001) and Ghosh and 

Pop (2002, 2004). Ghosh and Pop (2006) investigated 

the hydromagnetic rotating plasma flow in the 

presence of an inclined magnetic field with the 

positive direction of the axis of rotation. The 

interplay of a hydromagnetic force and Coriolis force 

was shown to exert a strong influence of a dynamo 

mechanism with reference to the solar and terrestrial 

context when the Hall current is taken into account. 

This study also identified that the electrical discharge 

of the solar corona in the presence of a traveling 

magnetic field experiences an irregular fluctuation at 

the resonant level to produce a solar thermonuclear 

fusion reaction with regard to an excitation 

frequency. Ghosh et al. (2010) more recently 

obtained detailed network simulation numerical and 

also asymptotic and closed-form solutions for 

unsteady magneto-hydrodynamic flow in a rotating 

channel permeated by an inclined magnetic field with 

magnetic induction. This study also incorporated for 

the first time, the effect of Maxwell displacement 

current effects and simulated the case of ionized 

hydrogen in an MHD generator system. Bég et al. 

(2010) extended the Ghosh-Pop model (2002, 2004) 

to also consider porous media effects in rotating 

plasma flow with Hall currents and inclined magnetic 

field influence. Using a network simulation scheme 

they verified the analytical solutions of Ghosh and 

Pop (2002, 2004) and also showed that complex flow 

characteristics arise owing to the imposition of a 

Darcian porous media drag force in the flow regime. 

Furthermore it was found that a sophisticated 

response to changing the orientation of the applied 

magnetic field is exhibited by the flow 

characteristics.  

In the present study we shall consider the influence of 

an oblique magnetic field on the rotating transient 

viscous hydromagnetic flow and free and forced 

convection under a forced oscillation. This regime is 

sometimes referred to as the “magnetic mirror 

regime” in astrophysical fluid dynamics. The present 

model has applications however both in astrophysical 

flows and also in hybrid MHD energy generator 

exploiting variable orientation magnetic fields. Such 

a study has to the authors’ knowledge, thus far, not 

appeared in the literature and is an important 

extension to hydromagnetic thermal sciences 

research. 

2. MATHEMATICAL MODEL 

Consider the transient, magneto-hydrodynamic free 

and forced convection flow of a viscous, 

incompressible, electrically-conducting Newtonian 

fluid between parallel plates, located a distance 2L 

apart, along the z – axis, under the action of a 

constant pressure gradient, in an (x, y, z) coordinate 

system. We choose a Cartesian system such that the 

z– axis is perpendicular to the plates z = ± L.  

 

Fig. 1. Physical model and coordinate system for 

MHD rotating channel flow 

 
The x – axis is in the direction of the pressure 

gradient. The channel rotates with uniform angular 

velocity, , about  the z-axis   (rotation axis) 

transverse  to the plane of the flow (x–y plane), under 

a static (non-oscillating), uniform magnetic field, 0B  

. 
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The inclined magnetic field, 0B , is orientated at 

angle   to the positive z-axis, in the x-z plane. 

Therefore the angle will sweep in a clockwise 

fashion, a circle only in the x-z plane:  will increase 

from 0 (when 0B is directed along the positive 

vertical z-axis direction) to 90 degrees i.e /2, (when 

0B is directed along the positive x-axis direction), to 

 (when 0B is directed along the negative z-axis 

direction), to 3/2 (when 0B is directed along the 

negative x-axis direction) and return to 0 degrees 

orientation (when 0B is again directed along the 

positive vertical z-axis direction). The regime is 

illustrated in Fig. 1 below. Both the fluid and the 

channel rotate in unison as a rigid body with the same 

constant angular velocity of rotation.  Since the flow 

is influenced by a forced oscillation a time-varying 

current flow of sinusoidal nature becomes relevant to 

the case of a displacement current with reference to 

the inclined magnetic field. The channel plates are 

both electrically non-conducting. Magnetic Reynolds 

number is insufficient to invoke magnetic induction 

effects, and furthermore ion slip, Hall current and 

Alfven waves are neglected in the analysis. The 

plates are infinite along the x and y directions, and 

therefore all physical quantities with the exception of 

pressure will be functions of the independent spatial 

and temporal variables, z and t (time) only Following  

Hughes and Young (1966), we take the following 

vectorial field definitions, which are customary in 

engineering magneto-fluid dynamics 

 ', ',0q u v  

0 0( ' sin , ' , cos )B x yB B B B    

( , , )E x y zE E E  

( , , )J x y zJ J J  

(1) 

where q, B, E, J are, respectively, the velocity vector 

(m/s), the applied magnetic field vector (Tesla i.e. 

Webers/m2 or Volt-seconds/m2), the electric field 

vector (Volts/m or N/Coulomb) and the current 

density vector (Coulombs/m2 or N/Volt-metre). u’ is 

the x– component of velocity, v’ is the y– component 

of velocity, B’x is the x – component of applied 

magnetic field, B’y is the y – component of applied 

magnetic field, 0B is the magnetic flux density and θ 

is the angle of inclination of the applied magnetic 

field with the positive direction of the axis of rotation 

(z– axis). Ex, Ey and Ez are respectively, the 

components of electric field in the x, y and z 

directions. Jx, Jy and Jz are respectively, the x, y, z 

components of current densities. 

The equations of motion (Navier-Stokes MHD 

momentum equations) under the Boussinesq 

approximation,for the transient 

magnetohydrodynamic rotating channel flow under 

oblique magnetic field,  can then be shown to assume 

the form: 

2

0

1
( ) 2

1
[1 '( )]

p v
t

T T







         



   

q
q q k q q

J B g k

 (2) 

The equation of continuity (mass conservation) is 

   q  = 0 (3) 

Maxwell’s electromagnetic field equations, following 

Hughes and Young (1966), neglecting the 

Maxwellian displacement currents, may be stated:  

X B  e J  (Ampére’s law) (4a) 

X E  = 
t





B
 (Faraday’s law) (4b) 

0B     (solenoidal relation) (4c) 

.

0

E



    (Gauss’  law) (4d) 

Equations (4a) and (4b) effectively describe how 

electric charges produces electromagnetic fields. 

Ohm’s law for a moving conductor, neglecting Hall 

current takes the form:  

J  =  [E+ q  B] (5) 

Equation (5) effectively shows how the fields affect 

the charges. The following notation applies:  is 

angular velocity  (radians/s), 0 is permittivity of free 

space which is also known as the electric constant 

(Farads per meter), t is time (s), g is gravity (m/s2),  

is the fluid density (kg/m3),  is kinematic viscosity 

(m2/s), e is the magnetic permeability (Henrys per 

meter, or N/Amp2) p is pressure (Pa),  is the fluid 

electrical conductivity (Siemens/metre),  is the 

coefficient of volume expansion, T is fluid 

temperature (Kelvins), T0 is the temperature in the 

reference state (Kelvins),  B0 is the applied magnetic 

flux density (the magnetic induction, also called the 

magnetic field density or magnetic flux density with 

units, Tesla) and k is the unit vector directed along 

the z-axis (rotation axis). Since there is no electrical 

field applied in the current regime under 

consideration (Fig. 1), the polarization voltage is 

neglected. Therefore it follows that E = 0, as 

indicated by Meyer (1958). Under these 

simplifications, the governing conservations 

equations, in component form, may be stated as 

follows:  

x-momentum  

22' 1 202 ' 'cos ,
2

Bu p u
v u

t x z


 

 

  
    

  

 
   

(6) 

y-momentum  
22' ' 02 ' '

2

Bv v
u v

t z






 
   

 

 (7) 

z-momentum  

.cossin')}('1{
1

0

2

0

0 






u

B
TTg

z

p





  (8) 

The appropriate boundary conditions (no-slip) at the 

plates are prescribed as:  

u ’= v ’ = 0     at      z =  L (9) 

u’, v’ are velocity components in the x and y 

directions, respectively,  is magnetic field 

orientation (degrees) and all other parameters have 

http://en.wikipedia.org/wiki/Permittivity_of_free_space
http://en.wikipedia.org/wiki/Permittivity_of_free_space
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been hitherto defined. The final terms in Eqs. (6) and 

(8) designate the components of the Lorentzian 

hydromagnetic retarding force. Assuming uniform 

axial temperature variation along the plates of the 

channel, the temperature of the fluid may be written, 

following Mazumder (1977) and Mazumder  et al. 

(1976) as: 

( ) ( )0T T Nx z    (10) 

where N is constant (uniform wall temperature 

gradient parameter) and the other terms have been 

defined earlier.  The equation of state is: 

[1 '( )]0 0T T      (11) 

Such a model while less complex than the 

conventional nonlinear convective heat transfer 

equation model, does nevertheless simulate one of the 

objectives of the present study - the net effect of 

buoyancy on momentum development in the channel. 

Albeit an approximation, this model has justifications 

and has been successfully employed in recent years.  

Mazumder (1977) has successfully implemented this 

model yielding extremely accurate results for 

astronautical heat transfer problems. Mazumder et al. 

(1976) also utilized this model to excellent effect in 

their simulation of Hall current effects on composite 

natural and forced convection heat transfer in 

magnetohydrodynamic channel flow. Ф (z) is 

dependent on the independent variable, z. Integration 

of Eq. (8) and subsequent differentiation with respect 

to x leads to d Ф (z) / d x  being zero. Now from Eq. 

(10), we have   T – T0 = N x + Ф (z), where  N is the 

uniform temperature gradient of the wall (i.e. wall 

temperature gradient parameter). Ф (z) is considered 

as the amount of heat transferred across the surface 

(wall) i.e. the  wall heat flux. This methodology 

provides a reasonable engineering approximation for 

the present problem. Using Eq. (11) and integrating 

Eq. (8) effectively leads to 

[1 '( )]0 0

2
0 'sin 2 ( )

2

p g T T dz

B
zu F x

 




   

 

 (12) 

Combining Eqs (10) and (12) we have 

' ( )
p d

g Nz F x
x dx

 


 


 (13) 

where F(x) is an arbitrary function.  Finally using Eq. 

(13), then Eq (6) yields:  

' 1
2 ' ' { ( )}

22
20 'cos ,

2

u d
v g Nz F x

t dx

Bu
u

z





 




   




 



 (14) 

Equations (14), (7) and (8) under boundary 

conditions Eq. (9) constitute a robust two-point 

boundary value problem. This model can be solved in 

primitive variable form either numerically or with 

analytical tools. However to yield a more generalized 

understanding of the flow phenomena, it is pertinent 

and beneficial to introduce normalized variables. This 

also facilitates the evaluation of analytical solutions. 

3. MODEL TRANSFORMATION 

Proceeding with the analysis, we now introduce the 

following non-dimensional variables:  

L
u u

px

 
 

 
 

 (15a) 

'
L

v v
px

 
 
 
 

 (15b) 

2

'

L T
t

v
  (15c) 

3

2

L dF
Px dx

   (15d) 

4

2

g NL
Gr

px




  (15e) 

2/1
22

0
2














LBM  (15f) 

z

L
   (15g) 

2
2 L

K



  (15h) 

where  is dimensionless z-coordinate, u and v are 

non-dimensional primary and secondary velocities, T 

is dimensionless time, Px is non-dimensional 

pressure gradient in the x’-direction, Gr is Grashof 

number, 2M is the Hartmann hydromagnetic 

number, and 2K is the rotation parameter i.e. 

reciprocal of the Ekman number. Introducing the 

transformations' Eqs. (15a) to (15h) into Esq. (14), 

(7) and (8) and boundary conditions Eq. (9), results in 

the following dimensionless equations and boundary 

conditions, with the elimination of the z-momentum 

equation:  

Primary Momentum Equation 

2
2 2 2cos 1 2 ,

2

u u
M u Gr K v

T
 



 
     


 (16) 

Secondary Momentum Equation 

.2 22

2

2

uKvM
T

vv












 (17) 

Transformed Boundary Conditions 
u = v  = 0   at       =  1 (18) 

4. ANALYTICAL SOLUTION 

Since the hydromagnetic flow is influenced by a 

forced oscillation, the following expressions are 

implemented for the velocity fields:  

TuTu  cos)(),( 0  (19a) 
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( , ) ( )cos0v T v T    (19b) 

Utilizing expressions Eqs. (19a) and (19b), the 

velocity distributions obtained for the primary (main) 

and secondary (cross) flows are, based on the method 

of complex variables. 

This technique is one of the most powerful methods 

available in applied mathematics and fluid 

mechanics. It is concerned with complex functions 

which are differentiable in a given domain. In MHD 

we employ analytical functions with complex 

variables. A function f(z) is defined as analytic (Bég 

et al. 2011) in a domain D if f(z) is defined and 

differentiable at all points of D. the function f(z) is 

analytic at a point z = z0 in D, provided f(z) is 

analytic in a neighborhood. The necessary condition 

therefore for implementation of complex variables in 

e.g. magneto-hydrodynamic flows, is that the 

function f(z) must be differentiable not only at a point 

z0, but throughout a specified neighborhood of that 

point. Such functions are also known as holomorphic 

in the domain D. Using this approach, the complex 

solutions can be shown to take the form: 

2 2 2( sin ) 21( , )
22

cosh( ) sinh( )
1

cosh( ) sinh( )

2 2 2( sin ) 21
22

cosh( ) sinh( )
1

cosh( ) sinh( )

1

M iG R PMKu T X
iG MK

i i
Gr

i i

M iG R PMK X
iG MK

i i
Gr

i i

R Gr




     

   



     

   



  
 
 
 

  
  

  

  
 
 
 

  
  

  



 (20) 

2 2 2 4 4 42 ( sin ) ( sin ) 1( , )
2 28

cosh( ) sinh( )
1

cosh( ) sinh( )

2 2 2 4 4 42 ( sin ) ( sin ) 1
2 28

cosh( ) sinh( )
1

cosh( ) s

P M iG M G RMK MKv T
iK G MK

i i
Gr

i i

P M iG M G RMK MK X
iK G MK

i i
Gr

i

 


     

   

 

     

 

   
 
 
 

  
  

  

   
 
 
 

 
 

 2inh( ) 2

P
Gr

i K


 

 
 

 

 (21) 

where  

2

1 2 2 2( )

M
R

 



 (22a) 

2 2 2[ cos tan ]
1

2 2 2( )

M M T
P

  

 


 


 

(22b) 

2 2(1 cos ) 2 tanH M T      (22c) 

1 / 21 2 4 1 / 2, ( )
2

H G HMK     
  

 (22d) 

2 4 4 4 2 2 2 1/ 2(16 sin 4 tan 4 )G K M TMK         (22e) 

5. SPECIAL CASES  

From the general solutions obtained in section 4, we 

may derive briefly some special cases, for physically 

pertinent regimes.  

Case I: Oscillating  Forced convection with an 

Oblique Magnetic Field 

In the absence  of buoyancy forces  Gr  0) the 

solutions Eqs. (20) and (21) reduce to the case for 

pure forced magnetohydrodynamic convection: 

2 2 2( sin ) 21( , )
22

cosh( )
1

cosh( )

2 2 2( sin ) 21
22

cosh( )
1

cosh( )

M iG R PMKu T X
iG MK

i

i

M iG R PMK X
iG MK

i

i




  

 



 

 

 


  
  

  

 

  
 

  

 (23a) 

2 2 22 ( sin ) 1( , )
2 28

cosh( )
1

cosh( )

2 2 22 ( sin ) 1
2 28

cosh( )
1

cosh( )

P M iG DRMKv T X
iK G MK

i

i

P M iG DRMK X
iK G MK

i

i




  

 



  

 

 


  
  

  

 

  
 

  

 
(23b) 

With 

4 4 4sinD M G MK   (23c) 

 

The expressions Eqs. (22a) to (22d) will remain 

unchanged. This regime is of considerable interest  in 

MHD generators, as elaborated in Vogin and 

Alemany (2007). 

 

Case II: Oscillating Free Convection with a 

Transverse Magnetic Field  

With   0, the applied magnetic field, B0 will 

become orientated along the z-axis i.e. at  exactly 90 

degrees (/2 radians) to the x-y plane of flow. Clearly 

sin 0  0 and cos 0  1. Effectively Lorentzian 

hydromagnetic drag will be retained in both the 

primary flow velocity, and secondary flow velocity, 

via the P,  and  expressions which will still retain 

M2 terms. Magnetic field, M2 however will disappear 

from the expression, GMK. The corresponding 

solutions for the primary and secondary flow fields, 

respectively, will then reduce from expressions (20) 

and (21) to:  
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2( ) 21( , )
22

cosh( ) sinh( )
1

cosh( ) sinh( )

2( ) 21
22

cosh( ) sinh( )
1 1cosh( ) sinh( )

iG R PMKu T X
iG MK

i i
Gr

i i

iG R PMK X
iG MK

i i
Gr R Gr

i i


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
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 
 
 

  
  

  

  
 
 
 

  
   

  

 
(24a) 

2 42 ( ) 1( , )
2 28

cosh( ) sinh( )
1

cosh( ) sinh( )

2 42 ( ) 1
2 28

cosh( ) sinh( )
1

2cosh( ) sinh( ) 2

P iG R GMK MKv T X
iK G MK

i i
Gr

i i

P iG R GMK MK X
iK G MK

i i P
Gr Gr

i i K



     

   

     


   

 


  
  

  




  
   

  

 (24b) 

In this case, the expressions Eqs. (22b) to (22e) will 

be affected and reduce to: 

2 2[ tan ]
1

2 2 2( )

M M T
P

 

 


 


 (25a) 

1 / 21 2 4 1 / 2, ( )
2

C G CMK     
  

 (25b) 

2 4 2 2 2 1/ 2(16 4 tan 4 )G K TMK       (25c) 

22 2 tanC M T    (25d) 

Of course the expression Eq. (22a) i.e. R1 is affected, 

since ,  are affected. This case provides an 

excellent benchmark for the vast majority of studies 

in oscillatory hydromagnetics, which consider only a 

transverse magnetic field acting on the flow.  

 

Case III: Oscillatory “Magnetic Mirror” buoyant 

Convection with Oblique Magnetic Field  

With the angular frequency of oscillation, T /2, 

a resonant response arises corresponding to the 

condition,  
1/2

4 4 41
cos 16

2
T K M Sin    . In an 

astrophysical context this implies that laser radiation 

corresponds to a driving frequency in the presence of 

a magnetic mirror, when  >0 (driving frequency). A 

resonant response will arise; laser radiation will be of 

sufficient intensity in the presence of a magnetic 

mirror to   generate reflection in the form of 

ultraviolet radiation and binary X-rays as the 

magnetic field increase in abruptly. The condition, 

 
1/2

4 4 41
cos 16

2
T K M Sin     defines an 

oscillatory turbulent dynamo mechanism in a solar 

hydromagnetic regime if the strength of a magnetic 

field will be an appropriate level. A charged 

oscillation can take place with reference to a driving 

force to exhibit resonant fluorescence in the presence 

of an ( driving frequency ) excitation frequency,  

>0.   

In the context of engineering energy systems, this 

case has particularly significant applications in the 

thermo-acoustic MHD generator, which exploits an 

imposed harmonically-oscillating thermo-acoustically 

generated pressure gradient. Kolesnikov and Khait 

(1975) earlier studied forced convection oscillatory 

flow in MHD generators, obtaining a solution in 

series form with allowance for terms expressing the 

square of the amplitude of (dimensionless) velocity 

fluctuations. However unlike the present study, the 

investigations by Vogin and Alemany (2007) and 

Kolesnikov and Khait (1975) have not considered 

rotational effects. In plasma fusion energy systems, 

also the magnetic mirror design is very promising. 

Discovered in astrophysical plasma flows, a magnetic 

mirror, comprises a magnetic field configuration 

where the field strength changes when moving along 

a field line. The mirror effect results in a tendency for 

charged particles to bounce back from the high field 

region. Charged particles with a velocity component 

perpendicular to the field will gyrate around a field 

line in a generally circular or helical orbit and thus 

sample some of the field lines that are converging to 

create the field gradient. The radial component of 

these field lines, coupled with the azimuthal motion 

of the particle, will result in a force parallel to the 

field and directed toward the region of smaller field 

strength. Over three decades ago, engineers began to 

study systems using magnetic mirror confinement for 

producing fusion energy. The lingering difficulty 

with such systems was the complexity of sustaining 

the necessary non-Maxwellian velocity distribution, 

since collisions scattered the charged particles so that 

the pitch angle was too small for containment. In 

addition, velocity space instabilities increased the 

escape of the plasma. However recently  Sokoloff 

(2007) has re-examined such systems (studied earlier 

by Frank et al. 1977), in particular magnetic mirrors 

used in next generation Tokamak magnetic fusion 

energy devices where the toroidal magnetic field is 

stronger on the inboard side than on the outboard 

side. The resulting effects are known as neoclassical. 

As we have mentioned earlier, magnetic mirrors also 

arise in astrophysical regimes e.g. electrons and ions 

in the magnetosphere (Moir, 1977 and Rice and 

Schaerer, 1986) for example, will bounce back and 

forth between the stronger fields at the poles. The 

Coriolis force acting on rotating vortices in a 

stratified media results in an excess of right-hand 

vortices in one hemisphere and left-hand vortices in 

the other. This asymmetry gives a component of the 

mean electromotive force parallel to the mean 

magnetic field (the electromotive force and the 

electric current are perpendicular to the magnetic 

field in mirror-symmetric media). This is the famous 

alpha-effect which plays a key role in magnetic field 

http://en.wikipedia.org/wiki/Toroidal_and_poloidal
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self-excitation (the so-called mean-field dynamo) and 

leads to the solar cycle and other phenomena in 

astrophysical plasma. At the temperatures required 

for engineering fusion devices, the fuel is in the form 

of a plasma with very good electrical conductivity. 

This facilitates the possibility to confine the fuel and 

the energy with magnetic fields, an idea known as 

magnetic confinement (Ferreira et al. 2004). The 

Lorentz force works only perpendicular to the 

magnetic field, so that the first problem is how to 

prevent the plasma from leaking out the ends of the 

field lines. Employing a magnetic mirror, when 

particles following a field line encounter a region of 

higher field strength, then some of the particles will 

be stopped and reflected. Advantages of a magnetic 

mirror power plant would therefore be simplified 

construction and maintenance due to a linear 

topology and the potential to apply direct conversion 

in a natural way. 

  

Case IV: Steady State Resonant  Free Convection 

with an Oblique Magnetic Field  

With the angular frequency of oscillation, T 0, 

oscillation is eliminated in the regime. The regime is 

then “steady state”. The velocity distributions in Eqs. 

(20) and (21), can be expounded in two ways. The 

excitation frequency may be either 

 
1/2

4 4 41
16

2
K M Sin    or 

 
1/2

4 4 41
16

2
K M Sin   . The former condition 

corresponds to a low frequency of oscillation in 

response to a solar dynamo mechanism, wherein the 

Lorentzian (magnetohydrodynamic) and Coriolis 

(rotational) forces are of the same order of 

magnitude. The latter condition implies a resonant 

response of turbulent characteristics, and the flow 

regime is destabilized by a magnetic field. This latter 

condition therefore leads to a steady state resonance 

on the velocity field. 

6. SHEAR STRESS DISTRIBUTION 

Since we are primarily concerned with terrestrial 

(engineering) applications of the flow configuration, 

it is pertinent to define several key quantities from an 

engineering design point, of relevance to MHD 

energy generators. The primary and secondary shear 

stresses at the upper and lower plates can be derived 

by taking the first gradients of the respective 

velocities at the lower ( = -1) and upper ( = +1)  

plates. 

Shear stresses at the upper and lower plates 

1   can be easily obtained from Eqs. (20) and (21) 

with reference to 1
du

d



  and 1

dv

d



  .  

Inspection of 1

du

d



 and 1

dv

d



  reveal that the 

primary (main flow) and secondary (cross flow) shear 

stress components vanish neither on the upper plate 

or the lower plate. Both shear stresses are functions 

of magnetic field (M2), rotational parameter (K2), 

phase angle (T) and of course magnetic field 

orientation (). Closer inspection of the shear stress 

expressions indicates that in the forced convection 

case (Gr  0), flow reversal i.e. backflow, will not 

arise. Further analysis however indicates that the 

primary shear stress at the lower plate i.e. 

1

du

d   

 will vanish at a critical value of the 

Grashof number. This criterion is defined as: 

2
cosh 2 cos2 5 4

2cosh 2 cos2
3 2

F G FMKGrcx
F G FMK

 

 


 

 
 (26) 

where  the functions F1, F2, F3, F4 and F5 are defined 

respectively as:  

4 2 4sin 81

2 2 22 cos tan 2

F M K

M T



   

 

 

 (27a) 

( sinh 2 sin 2 )2 1F F       (27b) 

2
(cosh 2 cos2

3

sinh 2 sin 2 )

F M  

   

  


 (27c) 

( sinh 2 sin 2 )4 1F F       (27d) 

2( sinh2 sin2 )5F M       (27e) 

Since cosh2  cos2  for all K2, T  and , the 

numerator in Eq. (28) will always be positive.  

The secondary (cross flow) shear stress at the lower 

plate, i.e. 

1
d

dv
 will also vanish at a critical 

value of the Grashof number. This criterion is defined 

as: 

22cosh 2 cos2 6 5
2cosh 2 cos2 23 4

H G HMKGrcy
H H GMK

 

 


 

 
 (28) 

where the functions H1, H2, H3, H4, H5  and H6 are 

defined respectively as 

4 2 2 24 cos tan1H K M T       (29a) 

2 4 4 4
[ sin ]2

2 2
2 sin1

H M M GMK

H M





 


 

(29b) 

( sinh 2 sin 2 )3 2H H       (29c) 
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(cosh 2 cos 2 sinh 2
4 1

sin 2 )

H H    

 

  


 

(29d) 

( sin 2 sinh 2 )5 2H H       (29e) 

( sinh 2 sin 2 )6 1H H       
(29f) 

Proceeding as with the lower plate, we find that at the 

upper plate, primary (main) flow reversal is initiated 

when: 

2
cosh 2 cos2 5 4

2cosh 2 cos2
3 2

F G FMKGrcx
F G FMK

 

 




 
 (30) 

Similarly secondary (cross) flow reversal arises at the 

upper plate when:  

2
2cosh 2 cos 2 6 5

2cosh 2 cos 2 23 4

H G HMKGrcy
H H GMK

 

 




 
 (31) 

The critical Grashof numbers given by expressions 

Eqs. (30) and (31) will therefore be numerically  

equal to those yielded by expressions Eqs. (26) and 

(28), for the primary flow, since the expressions 

emerge as being the same. 

7. RESULT AND DISCUSSION 

We have obtained solutions for the fourth order 

ordinary coupled partial differential equation system 

defined by Eqs. (16), (17) subject to a forced 

oscillation given by the Eqs. (19 a) and (19b) based 

on the boundary conditions Eq. (18). This yields the 

exact solutions given in Eqs. (20) and (21). The 

evolution of dimensionless primary and secondary 

velocity distributions given by the Eqs. (20) and (21) 

with the inclusion of Eq. (22) due to primary and 

secondary flows have been depicted graphically to 

show the influence of the various controlling 

parameters viz., M2, K2 , θ, Gr and ωT. A parametric 

study has also been undertaken for theresponse of the 

critical Grashof numbers for the primary and 

secondary flows (Grcx, Grcy) defined in Eqs. (30) and 

(31) respectively, to  (magnetic field inclination), 

M2 (Hartmann number squared), K2  (inverse Ekman 

number) and T (phase angle). These are depicted in 

Tables 1 to 6. Additionally numerical evaluations of 

the dimensionless primary (u) and secondary (v) 

velocities have been conducted for both steady state 

(T = 0) and transient (T> 0) cases, for the effects 

of  (inclination), M2 (Hartmann number squared), K2 

(inverse Ekman number) and  Gr (Grashof number). 

These are plotted in figures in Fig. 2 to Fig. 10. 

Default values for the control parameters in these 

graphs are taken as K2 = 4; T = 0 (steady state) or 

T = /4 (transient i.e. oscillatory flow) and  

(oscillation frequency) = 0.4 (so that T = 1), M2 = 10 

(strong magnetic field) and  = /4, unless otherwise 

stated 

 

Table 1 Critical Grashof number for primary flow (Grcx)  for K2 = 5, T = /4,  =0.4, with  M2 and   variation. 

M2 2.0 5.0 8.0 10.0 

  Grcx Grcx Grcx Grcx 

0 1.08222 1.20181 1.25510 1.26797 

/6 1.0 7974 1.20510 1.27004 1.29005 

/4 1.07708 1.20844 1.28810 1.318607 

/3 1.07423 1.21182 1.310601 1.35745 

/2 1.07117 1.21520 1.33969 1.41411 

Table 2 Critical Grashof number for secondary  flow (Grcy)  for K2 = 5, T = /4,  =0.4, with  M2 and   variation. 

M2 2.0 5.0 8.0 10.0 

  Grcy Grcy Grcy Grcy 

0 2.15679 2.22039 2.16832 2.10984 

/6 2.17596 2.36828 2.43820 2.43383 

/4 2.19565 2.56707 2.92311 3.13019 

/3 2.21585 2.84882 4.05982 5.77795 

/2 2.23651 3.27837 9.92299 9.50025 

Table 3 Critical Grashof number for primary flow (Grcx)  for M2 = 10,  = /4,  =0.4, with  K2 and T  variation. 

K2 4.0 6.0 8.0 10.0 

T  Grcx Grcx Grcx Grcx 

0 1.38988 1.25088 1.17166 1.12694 

/6 1.39747 1.25291 1.172057 1.12696 

/4 1.40331 1.25443 1.17234 1.12697 

/3 1.41406 1.25715 1.17283 1.12698 

5/12 1.44809 1.26500 1.17408 1.12693 



S. K. Ghosh et al. / JAFM, Vol. 6, No. 2, pp. 213-227, 2013.  

 

222 

 

Table 4 Critical Grashof number for secondary flow (Grcy)  for M2 = 10,  = /4,  =0.4, with  K2 and T  variation. 

K2 4.0 6.0 8.0 10.0 

T  Grcy Grcy Grcy Grcy 

0 3.42504 2.32074 1.88616 1.67069 

/6 4.01867 2.41911 1.91810 1.68507 

/4 4.68019 2.50081 1.94296 1.69599 

/3 6.94456 2.66673 1.98932 1.71574 

5/12 7.74044 3.37511 2.14116 1.77532 

Table 5 Critical Grashof number for primary flow (Grcx)  for M2 = 10, K2 = 5,  =0.4, with  T  and      variation. 

T  0 /6 /4 /3 5/12 

  Grcx Grcx Grcx Grcx Grcx 

0 1.26155 1.26519 1.26797 1.27298 1.28816 

/6 1.28332 1.28714 1.29005 1.29531 1.31123 

/4 1.31147 1.31553 1.31861 1.32418 1.34107 

/3 1.34971 1.35411 1.35746 1.36350 1.38182 

/2 1.40536 1.41033 1.41411 1.42096 1.44176 

Table 6 Critical Grashof number for secondary flow (Grcy)  for M2 = 10, K2 = 5,  =0.4, with  T  and      variation. 

T  0 /6 /4 /3 5/12 

  Grcy Grcy Grcy Grcy Grcy 

0 1.97035 2.04568 2.10984 2.24462 2.90057 

/6 2.22388 2.33654 2.43383 2.64266 3.74946 

/4 2.72710 2.93904 3.13019 3.56813 6.76544 

/3 4.23919 4.98221 5.77795 8.26952 18.23172 

/2 16.62148 16.2931 9.50026 5.29162 2.08156 

 

Inspection of Table 1 shows that Grcx remains 

positive for any combination of M2 and   . Positive 

Grashof number (Grcx > 0) in free convection flows 

implies cooling of the plate by free convection 

currents i.e. transport of thermal energy from the 

channel plates, to the intercalated fluid.  We note that 

the opposite case, Grcx < 0 would correspond to plate 

heating, wherein free convection currents transport 

thermal energy from the fluid to the plates. For any 

inclination of the magnetic field, , Grcx  magnitudes 

are found to increase steadily with an increase in M2. 

Increasing magnetic field, B0, as manifested by a rise 

in Hartmann number squared 

(

1/2
2 2 2

0M B L




 
  

 
and for constant semi-channel 

depth, electrical conductivity, fluid density and fluid 

kinematic viscosity, M2 is directly proportional to 

B0
2) will cause a rise in  thermal energy dissipated as 

a result of extra work exerted in dragging the fluid 

against the magnetic field.  As a result greater 

temperatures in the fluid will be elevated and the 

plates will be cooled, which accounts for the increase 

in positive Grcx. For low magnetic field, (M2 = 2) Grcx 

values continuously decrease as   increases from 0 

(transverse field case) through /6,  /4,  /3 to the 

maximum inclination of /2. In the last of these cases 

the applied magnetic field, B0, will be aligned with 

the positive x-direction, so Lorentzian drag will 

vanish from the primary (x-direction) momentum Eq. 

(16) as the magnetic drag term, 
2 2cosM u    0 as 

  /2). Therefore since the least magnetic drag is 

experienced for the maximum magnetic field 

inclination, the least thermal energy will be dissipated 

by work done in dragging the fluid against the 

magnetic field:  less heat will be convected to the 

plates and the Grcx value will be minimized (Grcx = 

1.07117 for  = /2 with M2 = 2.0).With increasing 

magnetic field values i.e. increasing Hartmann 

numbers squared (M2 = 5.0. 8.0, 10.0) however there 

is a contrary response to that for M2 = 2.0. Grcx 

values are continuously increased in magnitude as  

increases from 0 through /6,  /4,  /3 to /2. An 

interesting pattern is observed also (in Table 2) for 

the variation of the critical Grashof number for the 

secondary flow field, i.e. Grcy. In this case we 

observe that at any value of M2, Grcy is continuously 

boosted in magnitude with a rise in magnetic field 

inclination i.e. secondary critical Grashof number 

values progressively increase as the magnetic field 

sweeps from the positive z-axis ( = 0) through to the 

positive x-axis ( = /2). Magnitudes are also found 

to be considerably higher than in the case of the 

primary critical Grashof number (Grcx), particularly 

at high M2 value and greater inclinations. For 

example at M2 =8 and  =/2, Grcy attains a value of 

9.92299, and at M2 =10 and  =/2, Grcy attains the 

value of 9.50025. The corresponding values of Grcx 

for these two cases are much lower and equal to 

1.33969 and 1.41411, respectively. Therefore plate 

cooling is much greater in the secondary flow than in 

the primary flow. 
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In Tables 3 and 4, the evolution of the primary flow and 

secondary flow critical Grashof numbers, i.e. Grcx and 

Grcy, are shown, for combinations of the rotational 

parameter (K2) and the oscillation parameter (T). Both 

tables correspond to the oblique magnetic field case ( = 

/4).  Inspection of Table 3 reveals that with an increase 

in K2 from 4, through 6, 8 to 10, at a given T, there is a 

clear decrease in Grcx. Increasing K2 corresponds to a rise 

in the rotational velocity of the channel, for fixed L and  

(
2

2 L
K




  ). Coriolis force is therefore boosted as K2 

is increased and this serves to reduce critical primary 

Grashof number magnitudes.  Conversely for a fixed K2, 

as the parameter T increases from 0 (transverse field 

case) through /6, /4, /3 to the maximum inclination of 

/2, there is a steady rise in value of Grcx. Since  = 0.4, 

an increase in T implies that time (T) is increasing. 

Hence with progression of time, the critical primary 

Grashof number is enhanced. Table 4 shows that critical 

Grashof number for the secondary flow (Grcy) exhibits a 

similar response to  K2 and T i.e. with increasing K2 

values, Grcy magnitudes are depressed, and with 

increasing T values, magnitudes are  increased. 

However the values of Grcy are much higher than Grcx 

indicating that the secondary flow response is much 

stronger.  

Tables 5 and  6 show the combined effects of  T and   

on  Grcx and Grcy. Grcx as seen in Table 5, again increases 

with an increase in T, for any value of magnetic field 

inclination (). However with greater , the magnitudes 

of Grcx are clearly enhanced.  Maximum Grcx arises 

therefore for the maximum studied value of T (= 5/12) 

and the maximum value of  (= /2) , and attains a value 

of 1.44176. A similar trend is observed for the Grcy 

values in Table 6. However Grcy values generally 

increase with increasing T for   = 0, /6 and /4; 

however  as  is further increased to /3 and /2, Grcy 

values rise as T increases to /3 but then fall 

considerably for T = /2.  

Figures 2 to 10 show the primary (u) and secondary (v) 

velocity distributions across the channel for various 

values of the governing parameters (M2, K2, , Gr) for 

steady state (ωT = 0) and transient (ωT = π/4) cases, 

respectively.  

Figures 2 and 3 show the effect of the rotational 

parameter (K2) on u and v distributions. In the steady 

state case (Fig. 2) with increasing K2 primary velocity is 

generally reduced in magnitude. u values are negative 

near the lower plate of the channel ( = -1); however for 

the majority of the channel space  values are positive so 

that back flow does not arise here. Peak primary velocity 

arises near to the upper plate and with increasing Coriolis 

force (i.e. greater K2), the peaks are displaced further 

from the upper plate ( = 1). Conversely the secondary 

flow is found to be positive near the lower plate but 

strongly negative everywhere else in the channel 

indicating that there is strong secondary flow reversal. 

With increasing K2 values, v values are increased i.e. 

become more positive. A similar response is observed in 

Fig. 3 for the transient case (T = /4).  

Figures 4 and 5 depict the primary and secondary 

velocity response to various Grashof numbers. Again 

very similar responses are observed for the steady state 

(Fig. 4) and transient (Fig. 5) cases. With increasing Gr 

values, primary velocity is decelerated in the lower 

channel half (-1 <  < 0) whereas it is strongly 

accelerated in the upper channel half (0 <  < 1). 

Conversely secondary velocity is found to be strongly 

accelerated in the lower channel half (-1 <  < 0) but 

decelerated in the upper channel half (0 <  < 1) with an 

increase in Gr from 2 through 4, 6, 8 to 10. Primary and 

secondary backflow (negative u and v values) therefore 

arise generally in opposite halves of the channel.  We 

note that primary velocity magnitudes in either half of 

the channel are however greater than the secondary 

velocity magnitudes, for any Grashof number. 

 

 

Fig. 2. Velocity distributions for Gr = 2, M2 = 10, ωT = 

0, ω = 0.4, θ = π/4 for various K2 values. (Steady) 

 

Fig. 3. Velocity distributions for Gr = 2, M2 = 10, ωT = 

π/4, ω = 0.4, θ = π/4 for various K2 values.(transient) 
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Fig. 4. Velocity distributions for K2 = 4, M2 = 10, ωT = 

0, ω = 0.4, θ = π/4 for various Gr values.(steady) 

 

 

Fig. 5. Velocity distributions for K2 = 4, M2 = 10, ωT = 

π/4, ω = 0.4, θ = π/4 for various Gr values. (Transient) 

Figure 6 shows the influence of the oscillatory parameter 

(T) on the primary and secondary velocity profiles 

through the channel. Although primary flow reversal 

arises nearer the lower plate, initially, as we progress 

across the channel, with increasing T values (and 

therefore with progression of time, since  is constrained 

at 0.4), there is a distinct acceleration in the primary 

flow. Conversely the secondary flow is initially 

decelerated with increasing T values as we move from 

the lower channel towards the channel mid-point; 

thereafter however the secondary velocity is slightly 

accelerated with increasing T i.e. values become less 

negative. Generally however the secondary velocities are 

negative i.e. strong secondary back flow occurs 

throughout the channel for all T.  

The effects of magnetic field inclination,, on primary 

(u) and secondary (v) velocity profiles in the channel are 

shown in Fig. 7 and Fig. 8, again for the steady state and 

transient cases. The spatial distributions are very similar 

for both cases. For  = 0, the magnetic field is in the 

positive z-direction (transverse magnetic field case) and 

for  = /2, the magnetic field is orientated along the 

positive x-direction i.e. parallel to the plane of the 

channel plates. As  , increases from 0 through /6, /4, 

/3 to /2, the hydromagnetic drag force, 

2 2cosM u  in the primary momentum Eq. (16), will 

decrease from a maximum (for  = 0 for which cos  =1) 

to a minimum (for  = /2 for which cos /2  = 0). Via 

coupling of the primary Eq. (16) to the secondary 

equation (with the rotational term, - K2v) and coupling of 

the secondary momentum Eq. (17) with the primary 

equation (via the rotational term, K2 u), the magnetic 

term in Eq. (16) will affect the secondary flow.  In 

consistency with this, we observe that a rise in 

inclination clearly accelerates the primary flow (since 

hydromagnetic drag is reduced) and increase backflow in 

the secondary flow.  

 

Fig. 6.  Velocity distributions for K2 = 4, Gr = 2, M2 = 

10, ω = 0.4, θ = π/4 for various T values. 

 

Fig. 7. Velocity distributions for K2 = 5, Gr = 2, M2 = 

10, ωT = 0, ω = 0.4 for various  values. (steady) 

 

Fig. 8. Velocity distributions for K2 = 5, Gr = 2, M2 = 10, 

ωT = π/4, ω = 0.4 for various  values. (transient) 
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Fig. 9. Velocity distributions for Gr = 2, K2 = 5, ωT = 0, 

ω = 0.4, θ = π/4 for various M2 values. (steady) 

 

Fig. 10. Velocity distributions for Gr = 2, K2 = 5, ωT = 

π/4, ω = 0.4, θ = π/4 for various M2 values. (transient) 

Finally in Fig. 9 and Fig. 10, we observe that for both 

steady state and transient cases, with an increase in the 

hydromagnetic parameter (M2), primary velocity 

magnitudes are decreased in magnitude in the proximity 

of the lower plate (where back flow arises) but increased 

in the remainder of the channel. Conversely secondary 

flow velocity magnitudes are strongly decreased 

throughout the channel regime with an increase in M2 

from 5, through 7, 10, 12 to 14. The strong influence of 

magnetic field on the flow is therefore clearly visible. 

8. CONCLUSION 

Analytical solutions have been obtained for the transient 

magneto-hydrodynamic free convection flow in a 

rotating parallel plate channel in the presence of an 

inclined magnetic field. Critical Grashod numbers have 

been derived for the primary (main) flow and the 

secondary (cross) flow. The results have indicated that 

generally  

(i) For any inclination of the magnetic field, , Grcx  and 

Grcy  magnitudes are found to increase steadily with an 

increase in magnetic field parameter ( 2M ).  

(ii) Grcx and Grcy are increased with a rise in magnetic 

field inclination (). 

(iii) Grcy magnitudes are found to be substantially 

greater than Grcx, magnitudes, in particular at high 2M  

value and greater inclination (). 

(iv) With an increase in rotational parameter ( 2K ), Grcx 

and Grcy are generally decreased. 

(v) With increasing oscillatory parameter values (T) 

Grcx and Grcy magnitudes are increased.  

(vi) With increasing rotational parameter ( 2K ) primary 

velocity (u) is decreased whereas secondary velocity (v) 

is enhanced.  

(vii) With increasing free convection parameter i.e. 

Grashof number (Gr) primary velocity is decelerated in 

the lower channel half (-1 <  < 0) whereas it is strongly 

accelerated in the upper channel half (0 <  < 1); the 

converse response is computed for the secondary flow.  

(viii) With increasing T values (and therefore with 

progression of time) there is a strong acceleration in the 

primary flow, whereas there secondary flow is generally 

retarded i.e. greater backflow. 

(ix) With a rise in magnetic field inclination () the 

primary flow is accelerated (since hydromagnetic drag is 

reduced) whereas the backflow is generally decelerated 

i.e. increasing secondary back flow. 

The present model has been restricted to Newtonian 

flow. Future investigations will consider non-Newtonian 

fluids which are of interest in working operations in 

MHD energy generators. Furthermore the analytical 

solutions presented offer a good benchmark for future 

numerical simulations.  
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