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3D shape recovery is an interesting and challenging area of research. Recovering the depth information of
an object from a sequence of 2D images with varying focus is known as shape from focus. Focus value of
an image carries information about the object and shape from focus is a method which depends on dif-
ferent focused value images. It reconstructs the shape/surface/depth of an object based on the different
focused values of the object. These different focused valued images should be captured from the same
angle. Calculating the shape of the object from different images with different focused values can be done
by applying sharpness detection methods to maximize and detect the focused values. In this paper, we
propose new 3D shape recovery techniques based on LULU operators and discrete pulse transform. LULU
operators are nonlinear rank selector operators that are efficient with low complexity. They hold consis-
tent separation, total variation and shape preservation properties. Discrete pulse transform is a transform
that decomposes image into pulses. Therefore selection of right pulses, give sharpest focus values. The

proposed techniques provide better result than traditional techniques in a noisy environment.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

3DTV requires the facility of capturing and analyzing the multi-
view images and compressing and transmitting massive volume of
data through the communication channel. The most primary con-
cern in 3D technology is 3D shape extraction of different surfaces
and objects. Additionally, there are a variety of applications that re-
quire 3D shape of an object [1], e.g., virtual games, product model-
ing, facial representation, biomedical imaging, microscopic
imaging, vehicle navigation, astronomy, etc.

Image focusing is one of the principal schemes of 3D shape
reconstruction. The shape from focus (SFF) is one of the shape
recovery methods which reconstruct the 3D shape from a sequence
of 2D images taken from the same angle. The SFF images of an
object are defined as a number of frames which carry different
focused values of object’s surface. Each frame carries different
focusing information about different parts of the object.

Fig. 1 shows the basic image formation geometry, where f indi-
cates the focal length of the lens, u refers to the distance of the ob-
ject from the lens and » shows the distance of the image from the
lens. Since f and v are known, therefore, u can be calculated which
provides the depth map. This figure illustrates that when there is
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an object at point P, it will be well focused at the point P’ and if
the object point is not focused in image plane, there will be a blur
image around P’ [1]. The relationship between the object distance,
focal distance of the lens, and the image distance, is given by the
Gaussian lens law:

1 1 1
T M
Reconstructing the 3D shape based on the focused values, requires a
sharpness extraction technique which can detect the focused parts
in each frame. There are different sharpness measures for detecting
the focus in image pixels along all the frames of SFF. Laplacian,
modified Laplacian (ML), sum of the modified Laplacian (SML),
Tenenbaum, gray level variance (GLV), mean, curvature and M2,
are some of the methods which detect the best focus value [2].
Many different focusing techniques are proposed in last few
decades. Horn [3] in 1968 proposed a technique based on Fourier
transform. Tenenbaum [4] in 1970 built up the gradient magnitude
maximization technique which is based on sharpness of edges to
optimize focus quality. Buffington [5] in 1974 introduced aper-
ture-plane distortion. Erteza [6] in 1976 obtained an index value
for sharpness by considering the intensity distribution of the
image. Jarvis [7] in 1976 established a new technique based on
the sum-modulus-difference. Pentland [8] in 1985 proposed the
assessment of image blur. Grossmann [9] in 1987 suggested the
evaluation of depth of edge points by considering the blur of the


http://dx.doi.org/10.1016/j.jvcir.2013.01.005
mailto:aamir_saeed@petronas.com.my
http://dx.doi.org/10.1016/j.jvcir.2013.01.005
http://www.sciencedirect.com/science/journal/10473203
http://www.elsevier.com/locate/jvci

304 R. Rahmat et al./]. Vis. Commun. Image R. 24 (2013) 303-317

u
P
Lens -- f
Optical Axis
< > P
v

Fig. 1. Formation of focused and defocused images.

edges. Krotkov in 1987 discussed about the distance calculation of
the sharply focused point. Darrell and Wohn [10] in 1988 applied
Laplacian and Gaussian pyramids for depth estimation. Nayar
[11] in 1990 built the first SFF system and introduced Gaussian
interpolation in 3D microscope. He also introduced sum of modi-
fied Laplacian in shape recovery [12] in 1994. In 1992 Dillion
[13] combined shape from focus and stereo to get better result.
Asada [14] in 1998 described eliminating windowing method.
Zhang [15] in 2000 proposed 2nd/4th order central moment as a
sharpness detector. Helmi [16] in 2002 introduced new techniques
based on mean, curvature and point focus methods. Malik et. al.
[17] proposed a fuzzy-neural approach for estimation of depth
map using focus.

Shape from focus (SFF) suffers from various limitations that pre-
vent its usage in practical 3D reconstruction scenarios. One of the
major limitation is due to the discrete nature of data, i.e., the num-
ber of frames are finite and the focus information between the two
frames is lost. Increasing the number of frames is not an option
because it increases the computational complexity. Another limita-
tion is the magnification error that is due to change in the focus
value. The SFF method requires narrower focus so that only certain
pixels are best focused in a frame. Like all computer vision applica-
tions, illumination is another factor that affects the SFF technique.
The texture of object also contributes to the error in 3D shape
recovery using SFF. Various types of noise introduce error in esti-
mation of depth map using SFF. Therefore, there is a need for
new focus measures that can address these issues and limitations.
In this paper, we propose new focus measures that address the
issues of noise and perform well as compared to the existing focus
measures. The proposed focus measure addresses noise because it
has two inherent properties, i.e., noise reduction and sharpest
focus point extraction.

In this work, we propose new focus measures based on LULU fil-
ters and discrete pulse transform. The proposed techniques are
implemented on simulated and actual SFF data. The proposed
methods are also combined with the traditional focus measure
methods such as sum of modified Laplacian (SML), Tenenbuam
and gray level variance (GLV). Based on the quantitative and
qualitative experimental results, the proposed techniques are more
accurate in focus value extraction and shape recovery in the pres-
ence of noise. The rest of the paper is organized as follows: Section
2 discusses the traditional SFF techniques, Section 3 explains the

LULU operators and discrete pulse transform (DPT), Section 4 pro-
vides details of the proposed methods and Section 5 discusses
results, that is followed by conclusion.

2. Shape from focus techniques

SFF method requires capturing different image frames for the
same object from a specific angle. In general, there are two meth-
ods of capturing different sequences; one can be by changing the
focus value of the lens and keeping the object and camera’s posi-
tion fixed. Other way is keeping the camera’s focus value fixed
and change the distance between object and camera gently for dif-
ferent shots. The first case is used when the position of both the
camera and the object are fixed, and this information is used for
recovering the 3D shape of some static object. Therefore, only the
camera focus parameter is changed in this case. In the latter case,
the position of the object or the camera may not be fixed, e.g., a
person walking towards or away from the camera. In this case,
the change in focus is due to the change in the position of the
object.

Fig. 2 shows a sequence of frames that correspond to different
levels of object focus obtained through a single camera. In Fig. 3,
the test image shows different focused images of a cone object.
This sequence is constructed from 97 different images with differ-
ent focus values of the cone object.

After collecting the data we determine the exact frame where
the depth of the object is in focus or has the maximum sharpness.
A sharpness measure or focus measure (FM) for each image in the
sequence is computed at each pixel location using a small window
around the pixel. The success of any focus measure depends on
how accurate the sharpness in image pixels could be detected. By
applying different well known mathematical techniques for SFF
such as Laplacian [11], modified Laplacian (ML), sum of the modi-
fied Laplacian (SML), Tenenbaum (TEN) [16], gray level variance
(GLV), mean, curvature and M2, the best depth value for each
single point of the object can be obtained. This information shows
the highest amount of sharpness or best focusing values from dif-
ferent image captures.

By selecting the pixel with highest focus value among all
frames, the 3D shape of the object from a single view can be recon-
structed. The 3D shape is reconstructed by calculation of depth
map using the best focused point for every pixel, i.e. by calculating
the maximum value for each pixel (i,j) in all the frames. Let FM be
the focus measure value for each pixel (i,j), k be the image frame
number, D, be a 2D matrix containing the best focused value
(sharpness/maximum value) for each of the pixels and Dy be a 2D
matrix containing the corresponding frame numbers where the
pixels are best focused, then the equation for depth map calcula-
tion using SFF method is given as:

44/-,44/ z

Fig. 2. Sequence of images.
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Fig. 3. Test image with different focusing values.

[Dp(i.j), Dy (i.)] = max[FM(i. j)] @)

After getting the initial depth map, approximation methods can
be used in order to improve the results. Among these methods
include the Gaussian interpolation and neural networks [2].
Some of the focus measures which calculate sharpness are
used in this work for comparison with the proposed
techniques. They include SML, Tenenbaum and GLV. For more
information about other focus measure methods, please refer
to [2].

2.1. Sum of modified Laplacian method [2]

Sum of modified Laplacian (SML) is a modified version of Lapla-
cian operators. They are powerful sharpness detectors which are
widely used in SFF techniques for detecting the focused value for
each pixel. Eq. (3) formulates SML techniques when p(x,y) is a pixel
in the neighborhood U(xq,y,) of pixel (xo,¥0)) [2].

SML =

aZf(x,y)>2 (aZf(x,y>>2
+ 3
p(xy)guoyu)( o°x &y 3)

2.2. Tenenbaum [2]

Tenenbaum (TEN) technique is based on sobel operators. It
sums these operators along x axis and y axis. In Eq. (4), flx, y) is
the image function and p(x,y) is a pixel in the neighborhood
U(X0,y0) of pixel (xo,y0) [2].

TEN= > (k&) +f,x)?*)’ 4)

p(x.y)eU(xo.¥0)

2.3. Gray level variance [2]

Gray level variance (GLV) method is one of the best methods
and has high accuracy in sharpness detection in images. It has been
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widely used in focus value calculation for SFF data. In Eq. (5), f(x, y)
is the image function and py(xo, ¥o) is the gray values’ mean in the
neighborhood U(xo, yo) of pixel xo, yo [2]).

1
GLV:ﬁ Z

p(x.y)eU(x0.0)

(FX%.3) = Huyy)” ()

3. LULU operators and discrete pulse transform
3.1. LULU

Rohwer and Toerien in late 1980s introduced a novel, innovative
nonlinear smoother, named LULU smoothers, based on extreme or-
der statistics [18]. LULU operators are local and nonlinear, fully
trend preserving, which make them an efficient means for multi-
resolution analysis of sequences [19]. For detailed discussion of
properties as well as their proofs, check Refs. [19,20].

These MinMax (MaxMin) operators consist of the sub-operators
L (low) and U (up) with different order for different filters. For a gi-
ven bi-infinite sequence, ¢ = (¢&i), i€ Z, the 1D LULU operators can
be defined as follows [21]:

( )1 76[}7min{éi>"'7éi+n}}7
(Un); = Gt max{&, ..., Sinlth

Fig. 4 shows the effect of L and U smoothers on a randomly gener-
ated signal.

LULU operators can be used on 2D images for different applica-
tions like object extraction, noise filtering, etc. In 2D LULU, the
neighbors of the pixel f(i,j) is divided into four regions as shown
in Eqs. (8)-(11) and is illustrated in Fig. 5;

max{min{¢;_,,...
min{max{¢&;_,,...

icz (6)
icz (7)

Il - [f(lvj_l)vf(ivj)vf(l+l ] fl+1’])]7 (8)
L=[f—1,j-1),f(—1)).f(.).f(i.j—1) 9)
I =[f(i,j+1).f(.7).f(+1.j).f(i+1,j+1)], (10)
L =[f(i—1,j+1),f( = 1,)).f(i.)).f(i.j+ 1)]. (11)
Based on the defined neighborhood in Egs. (8)-(11), L and U opera-

tors can be defined as follow;

K | | ' ' (0

5 10 15 20 25 30
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Fig. 4. (a) Original signal and (b) result of L smoother on the signal, and (c) result of
U smoother on the signal.
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Fig. 5. Illustration of neighbors for Eqs. (8)-(11), (a) I, (b) I, (c) I3, and (d).
L(i,j) = max(min(I; ), min(ly), min(l5), min(ly)), (12)
U(i,j) = min(max(I; ), max(l;), max(I3), max(ls)). (13)

3.2. Discrete pulse transform

Discrete pulse transform (DPT) is defined as the composition of
pulses; each pulse is a string of zero values which is zero every-
where except for the few consecutive elements. DPT can be applied
in images for object extraction by recognizing the corresponding
pulses for different objects in the image. DPT in image processing
is based on LULU operators on multidimensional arrays. The DPT
of a function f € A(Z?) is a vector of the form [22];

DPT(f) = (D1(f), D2(f), .., Dn(f)). (14)

In Eq. (14), N refers to the number of total pixels in the image. is
summation of pulses and hence is given as Dy(f) = Z;’i’})q)ns where
(ns Tepresents the pulses. The pulses are given as: ¢,s where
s=1,2,...,7(n), and y(n) is a function of n and it provides informa-
tion on the total number of pulses required for each pixel. Hence,
its value affects the number of pulses that will process each pixel.
These functions are discrete pulses with support of size, n,
n=1,2,...,p(n). “Support” indicates that this function will exist
for some finite values and will be zero for all other values. In this
context, let W be a connected set for which this discrete function
exists. The discrete function is zero outside this connected set.
The set is called the support of the pulse, i.e. w = supp(¢). The value
of on is called the value of the pulse, i.e., value of pulse can be
positive or negative. If the value of ¢ is positive then is an up-pulse,
if it is negative, is a down-pulse. Using DPT, we represent a function
fe A(Z%) as a sum of pulses [22].

N N_y(n)
f = ZDn(f) = Zz(rons (15)
n=1

n=1s=1
The discrete pulse transform for a function f € A(Z%) is obtained via
iterative application of the operators L,, and with U, increasing from
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1 to N. For a given n, the sequencing of and does not affect the
properties of DPT. However, it introduces bias towards up-pulses
or down-pulses. Let denote either the composition L,oU, (for com-
bining L and U, we apply opening operators; In mathematical mor-
phology, Q,, opening is the dilation of the erosion of a set A by a
structuring element B: AoB = ((A © B) @ B) [23] or the composition
UnpoL, and let Q,=P,oP,_10---0P;0Py. In the general theory of
mathematical morphology, is known as an alternating sequential
filter. An alternating sequential filter is an iterative application of
openings and closings with structuring elements of different sizes
[24].

However, here we are interested in the portions of the image
which are filtered out by the application of, P, n=1,2,...,y(n).
We ultimately obtain Q,(f), which is a constant function containing
no information about the original image except the general level of
illumination. The rest of the information carried by fis in the layers
peeled off [22], i.e., the number of pulses which are considered.
More precisely,

f=(id = P1)(f) + ((id = P2) o Q1) (f) + ((id — P3) 0 Q2)(f)
+ - ((id — Py_1) 0 Qn_2) (f)+((id — Py) 0 Qn_1) () +Qn(f).  (16)

For more information, please refer to [22,25,26].

4. Shape from focus using LULU and discrete pulse transform

In this work, we propose a new shape from focus method based
on LULU filters and discrete pulse transform to determine the best
frame number, i.e. the frame where the pixel is best focused. At this
point, the best frame number is chosen according to the best max-
imum focus value for each pixel along all the frames. This is due to
the characteristic of SFF which calculates the depth based on
focused values.

4.1. Modified LULU focus measure (MLULU)
This algorithm is based on LULU operators when they are ap-

plied in 2D or 3D neighborhood. The effects of the size of neighbor-
hood (window size) have been discussed in detail in [32].

The LULU operations can be performed in 2D or 3D neighbor-
hood. 2D neighborhood implies processing every frame separately
with LULU by considering the neighborhood pixels in one frame at
a time. 3D neighborhood means that pixels from multiple frames
are considered for processing with LULU. The disadvantage of 3D
neighborhood is the increase in computational complexity. The
following paragraphs provide more detail on the 2D and 3D neigh-
borhood processing.

2D neighborhood means when we apply these operators on
each frame separately, regardless of the frames before and after.
This concept is illustrated in Fig. 5 and the corresponding Egs.
(8)-(13). Following are the steps of the algorithm when 2D neigh-
borhood is considered:

(1) L and U operators are applied on each frame of the image
sequence. Eqs. (10) and (11) explain the fundamental con-
cept for L and U operators.

(2) Initially, four pixels are considered in the neighborhood as
shown in first row and corresponding first and second col-
umn in Fig. 6. Therefore, the operator Ls is applied followed
by Us. This operation is referred to as LsUs.

(3) Then, the window is expanded to consider nine pixels in the
neighborhood as shown in third and fourth column in Fig. 6.
This operation is referred to as L3UsLgUs, i.e. L3Us5 is followed
by Lg and then Us. It is necessary to mention that higher
orders of LULU operators can be performed by increasing
the sub-neighbors window size. However, to avoid blurring
the image, we applied until L3UsLgUs. This operation is given
by the following equation:

A/ _ f(l - 17] - 1)/f(l - 17.])7f(17])7f(l7.] - 1)7f(l - 27j)7
fli-2j-1).f(1-2j-2).f(i-1,j-2).f(j-2)]
(17)

(4) Steps 2 and 3 are repeated in all diagonal directions as
shown in row 1-4 in Fig. 6. Egs. (18)-(20) show the opera-
tions corresponding to row 2, 3 and 4 in Fig. 6.

()

(mEE {
C x x

s\

Fig. 6. 2D neighborhood for L3UsLgUg (pixel x corresponds to f(i, j)).
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Fig. 7. 3D neighborhood of window size 3 x 3 for pixel “x” (pixel x corresponds to f{(i, j)).

3D neighborhood for pixel “X”

C”:3" sub-window

D”:4%h sub-window

Fig. 8. 3D neighborhood for pixel “x” (pixel x corresponds to f{i, j)).
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Finding the frame with
maximum value along all
frames for each pixel

Fig. 9. Choosing the maximum value along all frames.

Table 1
DPT operators for SFF.

LULU operator

DPT Operator

Ly

Us

LsUs
UsLs
L3UsLg
UsL3Us
L3UsLgUs
UsL3UslLs

f=(id - L3)(f)

f=(id - Us)(f)

f=(id - L3Us)(f)

f=(id - UsL3)(f)

f= (id — LsU3)(f) + ((id — L3UsLg) o0 Q3)(f)
f= (id — UsLs)(f) + ((id — U3L3Ug)oQs)(f)
f=(id — L3U3)(f) + ((id — L3U3LgUs) o Q3)(f)
f=(id — UsL3)(f) + ((id — UsL3UgLg)oQs)(f)

B/: |:{(1_ 17]+1)af(l_1>J)7f(l7])7f(l71+l)7f(l_27])7
(1_27]+1)7f(

Wi
e

.
-
.

‘_,..
e
a_w

20
.:.
-

-
-
-

-
¥.

i-2,j+2).f(i-1j+2).f(i,j+2)]
(18)

Fig. 10. Test object: simulated cone.

, {f(i,H D, X0, fi+1,0),f(+1,j+1),f(i,j+2), }
Fl+1,j+2),f(+2,j+2),f(+2,j+1),fi+2,))]
(19)

D — |:f(17.]_ 1)7f(17])af(1+ laj_ 1)7f(l+ 1,])7f(l+27])7 :|
fa+2i-1)f(i+2j-2).f(i+1,j-2).f(i-2)]

(20)
(5) Subsequently, the L and U formulas are given as:
L(i,j) = max(min(A"), min(B'), min(C'), min(D")), (21)
U(i,j) = min(max(A'), max(B'), max(C'), max(D')). (22)
(6) Finally, the modified LULU (MLULU) focus measure is given
as:
MLULU = max[L(i,j), U(i,j)]. (23)

For 3D neighborhood, the neighborhood’s window around each
pixel is different. It means that LULU value for each pixel not only
depends on its neighbors in the same frame but also neighbors of
one frame before and one frame after it. Therefore the neighbor-
hood is a 3D one as it is shown in Fig. 7.

With the new 3D neighborhood defined around a pixel “x” (pix-
el x corresponds to f{i, j)) as shown in Fig. 7, the sub-windows are
defined as shown in Fig. 8. It can be seen from Fig. 8 that step 1 and
2 remain same as described earlier. However, additionally the two
pixels corresponding to f(i, j) in the two consecutive frames (i.e.,
one frame before and one frame after it) are also considered. There-
fore, it’s a six pixel neighborhood that includes four pixels from the
same frame while one pixel each from the adjoining consecutive
frames.

Based on Fig. 8, the sub-window equations for six pixels neigh-
borhood are as follow:

Fig. 11. Test object: simulated slope.
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Fig. 13. Test object: real cone.

-

o

Fig. 15. Test object: real LCD.

Fi—1J=1).f0=1.4).f00).f(5 = 1).f2(0.5).fa(0.])
=15+ 1).f0=1.0).f0).f 5+ 1), f1(0.0). fra ()
A5+ 1) f@0 S+ 10).f(+ 1,5+ 1),.f100). ()
(A7 —=10).f01).f(+ 1,5 =1).f(+1.5).f(0.5). fa (i)

(24) The formulas for L and U are the same as Eqs. (21) and (22). Instead
(25) of A, B, C and D, we substitute A”, B, C" and D". In Egs. (8)-(11),
. (26) (17)-(20) and (24)-(27), it is obvious that the LULU operators detect
’ the peaks and valleys in each sub-window. These operations illus-
] (27) trate that when we apply L or U based on Egs. (21) and (22), they

]’
l

A
5
o
D
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Fig. 16. Test object: real plane.

Ground Truth

TENFM

MLULU FM

SMLFM

GLVFM

0.5).

Fig. 17. Simulated cone in the presence of impulse noise (ND
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Ground Truth

AN | R
1", . _ur_&lw |_ , _

il

Fig. 18. Real LCD in the presence of impulse noise (ND = 0.05).

minimize noise in each region by eliminating the very high or very
low intensities and ensure a smooth focus measure in the presence
of noise.

Smoothing characteristic of LULU operators plays a very impor-
tant role in focus measurement. For images corrupted with noise,
the noise value is wrongly interpreted as focused value. However,
the focus value should be at least similar to few neighboring pixels,
because in each frame, the focusing part is not a point. Rather it re-
fers to a small part, tiny group of pixels, near each other. Based on
the concept of focusing, it is obvious that high frequencies may be
chosen as the focused values which are in fact the noise values.

After applying LULU operators, we substitute each pixel’s inten-
sity by its LULU value. For reconstructing the 3D shape, we select
the maximum value for each pixel along all frames as shown in
Fig. 9.

Fig. 9, illustrates the sequence of frames for calculating the
focused pixel among all the frames for pixel (i,j). As a result, the
output of SFF is two 2D matrices; maximum intensity and corre-
sponding frame index. Maximum intensity holds the best focus va-
lue for each one of the pixels, and corresponding frame index holds
the resultant frame number where the pixel is best focused [2]. Let
MLULU be the modified LULU focus measure value for each pixel
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Table 2
Proposed methods performance in the presence of impulse noise for simulated cone
object.

Noise density Focus measure (FM) RMSE Correlation PSNR

0.5 MLULU 15.69 0.59 24.21
MDPT 28.74 0.10 18.99
SML 32.01 0.04 18.02
GLV 22.37 0.37 21.13
EN 2524 022 20,09
0.05 MLULU 12.12 0.73 26.46
MDPT 17.09 0.58 23.47
SML 29.34 0.19 19.49
GLV 14.8 0.59 24.72
TEN 12.13 0.72 26.46
0.005 MLULU 15.01 0.65 24.55
MDPT 17.32 0.57 2347
SML 27.04 0.19 19.49
GLV 9.71 0.85 28.38
TEN 8.55 0.92 29.49
35
30 .\
25 %
w20 ~—MLULU FM
s \-— - -=MDPTFM
\K SMLFM
10 — ~GLVEM
5 ~~TEN FM
0
0.5 0.05 0.005

Noise Density

Fig. 19. RMSE comparison between different methods for simulated cone object in
the presence of impulse noise.

0.9

0.8
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Fig. 20. Correlation comparison between different methods for simulated cone
object in the presence of impulse noise.

(i,j), k be the image frame number, D, be a 2D matrix containing
the best focused value (sharpness/maximum value) for each of
the pixels and Dy be a 2D matrix containing the corresponding
frame numbers where the pixels are best focused, then the equa-
tion for depth map calculation using SFF method is given as

[Dy (i), Dy(i.)] = max[*MLULU (i.j))- (28)

30
P 24 — - —--MLULU FM
2 / = MDPT FM
e 2 '
/ SMLEM
-<GLVFM
18
—~TEN FM
15

0.5 0.05
Noise Density

0.005

Fig. 21. PSNR comparison between different methods for simulated cone object in
the presence of impulse noise.

4.2. Modified discrete pulse transform focus measure (MDPT)

In this proposed focus measure (FM), we apply DPT on each
frame based on Eq. (14). Since here we apply LULU and conse-
quently DPT only for L3, Us, L3Us, UsLs, L3UsLgUsL3Ug, L3UsLgUs,
and UsL3UgLs, therefore the DPT operators are also limited as it is
shown in Table 1.

where frefers to DPT values, id is the original pixel value and Qs
refers to the DPT value of the third order operators, which are
(id — L3)(f), (id — Us)(f), (id — LsUs)(f) or (id — UsL3)(f) in this work.

The main concept behind this algorithm is to reconstruct the 3D
shape based on the very high frequencies. DPT is a very strong
technique for object detection. DPT decomposes the image into
many pulses and each object in the image can have a specific num-
ber of pulses. For detecting the object, we shall find out the range
of pulses and eliminate other pulses from the image. We use this
concept of pulses in SFF. The focused parts of the images can be
selected by choosing the correct pulses.

In this work, we considered the first two pulses in images which
are D; and Dg to detect the focused values. We chose the most ex-
treme pulses which may represent the focused values.

5. Results and discussion

The proposed techniques are implemented on simulated and
actual SFF data separately and in combination with other focus
measure methods including Sum of Modified Laplacian (SML), Ten-
enbaum and gray level variance (GLV). These methods have been
selected because they are the most commonly cited focus measure
methods. SML was used by references [2,16,11,27,28], GLV by
references [16,29,30] and Tenenbaum by [29,31]. All of these
experiments are repeated in the presence of impulse, Gaussian
and speckle noises for 3D shape recovery. The reconstructed depth
map has been compared with the original data by using three dif-
ferent image quality metrics, which are; peak signal to noise ratio
(PSNR), root mean square error (RMSE) and correlation. Based on
the quantitative and qualitative experimental results, the proposed
techniques are more accurate in focused value extraction and
shape recovery in the presence of noise.

The proposed techniques have been tested on seven different
objects. The results are shown and discussed later in this section.

5.1. Test Images

Texture of objects play an important role in the identification of
best focused pixels. Hence, different objects with different textures
have been chosen to be studied in this work. Simulation has been
performed using three different quality measures; RMSE, correla-
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Fig. 22. Coin in the presence of Gaussian noise (variance = 0.5).

tion and PSNR to compare proposed methods with SML, GLV and
TEN for different types of noise. For the purpose of comparison se-
ven test sequences are used, including both the simulated and real
objects, i.e. simulated cone, simulated slope, simulated cosine, real
cone, real coin, real LCD and real plane, as shown in Figs. 10-17. In
total, seven objects are evaluated; three simulated objects and four
real objects.

The test objects are chosen from different textures with dif-
ferent level of details. Coin, sine and cosine carry good amount
of details. These high textured images are good SFF images
which help to test the outcomes of focusing. Slope and plane

have poor uniformed texture. Cone is a dense textured object
and it is considered to have medium level of details, LCD image
has low level of details and variance and it is a microscopic im-
age. The resolution of images is 360 x 360 x 97 for simulated
and real data cone, 320 x 320 x 60 for slope and cosine objects,
300 x 300 x 68 for Coin, 300 x300x60 for LCD and
200 x 200 x 87 for plane.

Simulated cone: In this case the sequence is constructed from
97 different images with different focus values, with the resolution
of 360 x 360. Fig. 10, illustrates the simulated data of the cone. It
has a dense texture [2].
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Fig. 23. LCD in the presence of speckle noise (ND = 0.5).

Simulated slope: This data consists of 60 frames with the reso-
lution 320 x 320. Some of the frames are shown in Fig. 11.

Simulated cosine: Similar to slope and sine simulated data,
simulated cosine also consists of 60 frames with the resolution of
320 x 320. Some of the frames are shown in Fig. 12.

Real cone: Real cone object is the real data of the real cone. The
resolution is 360 x 360 and the number of images in the sequence
is 97. Some frames are shown in Fig. 13.

Real coin: This data has been collected from a microscopic
object with 68 frames of 300 x 300 pixels. Fig. 14 shows different
focused frames of this object. This object is the head of Lincoln on a
one penny coin which is a good sample of a rough texture [2].

Real LCD: LCD is another microscopic object which is a se-
quence of 60 frames of real data. The resolution of the image is
300 x 300. Fig. 15 shows three of the frames for TFT-LCD.

Real plane: Real plane is the real data collected from a plane. Its
SFF data consists of 87 frames at resolution of 200 x 200 pixels.
This object is a good example of poor texture and some of its
different focused frames are illustrated in Fig. 16.

5.2. Experimental results

The seven different test objects are considered in the presence
of impulse noise, Gaussian noise and speckle noise. Each noise is
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evaluated with three different noise densities/variance, which are;
0.005, 0.05 and 0.5. The results of the proposed methods are com-
pared with SML, GLV and TEN techniques. These techniques were
explained in Section 2.

In general, all the results obtained for each object are compared
qualitatively and quantitatively with SML, the GLV and TEN. This
comparison is done via three different image quality metrics which
are; PSNR, RMSE and correlation.

5.2.1. Proposed methods

This section shows the result for the proposed methods which
are described in Section 4 and comparison is provided both
qualitatively and quantitatively with SML, GLV and TEN. The 3D
recovered shapes for the seven objects in the presence of various
types of noise are shown in this section.

Three noise levels are used for experiments, i.e., high (noise
density/variance = 0.5), medium (noise density/variance =0.05)
and low (noise density/variance = 0.005). Fig. 17 illustrates the per-
formance of SML, TEN, GLV, MDPT and MLULU Focus Measures
(FM’s) for simulated cone object in the presence of impulse noise
with the noise density (ND) of 0.5.

In Fig. 18, the performance of MLULU is compared with other
three methods in the presence of impulse noise with noise density
of 0.05 for real LCD.

In general, proposed focus measure performs well in the pres-
ence of impulse noise as is evident from Figs. 17 and 18. MLULU
FM removes the locally occurring hills and valleys of signals and
images. It is clear that in the presence of impulse noise, the other
focus measures (FMs) are not performing well and the 3D shape
reconstructed based on them is not clear at all. Their result is a
set of noisy data which does not show anything similar to the ob-
ject. This is true for high noise density (0.5) as well as medium
noise density (0.05) levels. But the 3D shape reconstructed based
on MLULU FM is clear and shows the shape at all noise levels.
The quantitative result for simulated cone is provided in Table 2
and Figs. 19-21.

It is clear in Fig. 19 that MLULU is performing better than SML
and MDPT in general and at high and medium impulse noise levels,
its performance is better than all focus measures. This is also
evident from Figs. 20 and 21.

In Figs. 22 and 23, we show the comparison between MLULU,
SML, GLV and TEN for Gaussian and Speckle noises. We conclude
that MLULU is not only a good focus measure in the presence of im-
pulse noise, but its performance is comparable in the presence of
other types of noise i.e., speckle and Gaussian. In Fig. 22, MLULU
method is performing better than other methods in the presence
of Gaussian noise with variance (V) = 0.5.

From Fig. 23, it is obvious that MLULU performance is compara-
ble with other focus measures in the presence of Speckle noise.

6. Conclusion

In this paper, new focus measures are proposed and tested for
3D shape recovery. The proposed techniques are implemented on
seven simulated and real objects. They are also cascaded with
existing focus measure methods, i.e., sum of modified Laplacian
(SML), Tenenbaum and gray level variance (GLV). The experiments
are repeated in the presence of impulse, Gaussian and speckle
noise for 3D shape recovery. The reconstructed depth map has
been compared with the ground truth by using three different
image quality metrics, which are; RMSE, PSNR and correlation.
Based on the quantitative and qualitative experimental result,
the proposed techniques are more accurate in focused value

extraction and shape recovery especially in the presence of various
types of noise. MLULU focus measure performs better than existing
methods when the SFF data is noisy. The combined performance of
MLULU and existing methods, show a good improvement in shape
recovery.
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