
ORIGINAL RESEARCH PAPER

Real-time processing for shape-from-focus techniques

Jawad Humayun • Aamir Saeed Malik

Received: 26 December 2011 / Accepted: 12 December 2012

� Springer-Verlag Berlin Heidelberg 2013

Abstract An increase in the number of frames and

computational complexity of the focus measure causes the

shape-from-focus (SFF) method to become time consum-

ing and occupy a lot of memory. As such, these factors

become a limitation for using SFF techniques in real-time

applications. However, the computational time can be

significantly reduced using a parallel implementation of

these methods on multiple cores. In this article, various

SFF methods are compared in a parallel computing envi-

ronment. The intent of this research is to analyze the

speedup of various focus-measuring methods using a dif-

ferent number of cores to determine the optimal number of

cores required for SFF applications.

Keywords Parallel computing � Shape-from-focus �
Focus measure � Depth map � Speedup performance �
Single program multiple data

1 Introduction

The planar projection of the real world onto a 2D image

sensor causes the third dimension of the scene to be lost.

A depth map is basic information required by 3D vision

systems, used to approximate the 3D representation of an

object or a scene. A depth map is a 2D matrix whose values

correspond to the points in the real world, i.e., the points

nearest to the observer and farthest from the observer, and

vice versa; intermediate values correspond to real-world

points that are an intermediate distance between the far-

thest and nearest points. In attempts to generate effective

depth maps, a variety of active and passive methods are

discussed in the literature [1–5]. In this paper, we consider

a shape-from-focus (SFF) technique, a passive 3D shape-

recovery method. Figure 1 depicts the basic image-for-

mation phenomenon when light, after being reflected by the

object, passes through the lens and falls onto an image

detector (ID). From the figure, the distance between the

lens and image detector is ‘s’ whereas the distance between

the lens and the focused point P0 is ‘v’. Thus, if we need a

sharply focused image, the condition s - v = 0 should be

met, i.e., the image detector must lie at the sharply focused

point P0; otherwise, a blurred circle P00 will be formed at

the image detector. This focus can be achieved by either

adjusting the position of the lens ‘L’ or the object. If ‘u’ is

the distance of the object from the lens, ‘f’ is the focal

length of the lens and ‘s’ is the distance of the lens from the

image detector, their relationship can be given by the

Gaussian lens law, as in Eq. (1).

1

f
¼ 1

u
þ 1

s
ð1Þ

SFF is a passive optical method in which the sequence

of images is acquired either by relocating the object of an

unknown 3D shape in the direction of optical axes in small

steps or by changing the lens position from the image

sensor in the camera. The portion of the object

corresponding to the 2D plane of the lens’ focal plane is

the sharpest and most detailed compared to the out-of-

focus regions. The degree of knowledge of the focus and

defocus can be calculated using focus-measuring

techniques, as the depth information is provided by the

Electronic supplementary material The online version of this
article (doi:10.1007/s11554-012-0316-z) contains supplementary
material, which is available to authorized users.

J. Humayun � A. S. Malik (&)

Electrical and Electronic Engineering Department, University

Technology PETRONAS, Tronoh, Malaysia

e-mail: aamir_saeed@petronas.com.my

123

J Real-Time Image Proc

DOI 10.1007/s11554-012-0316-z

http://dx.doi.org/10.1007/s11554-012-0316-z


sharpest pixel among the sequence. For example, the

construction of depth map through SFF can be performed

after applying the focus measure; detailed steps of the

algorithm have been described by Nayar [6]. Figure 2

shows the image sequence of a simulated cone at various

focus levels. In the 15th image of the sequence, the lower

base of the cone is in focus; as the image number increases,

the focus plane shifts to the upper tip of the cone.

Despite being straightforward and simple, SFF methods

have certain constraints that affect the depth-estimation

results. For instance, as SFF methods require the full image

sequence, they cannot work in a real-time dynamic envi-

ronment in which the object is moving, the illumination

varies from frame to frame, or the object distance varies in

consecutive frames. However, one solution to this problem

is a parallel implementation of SFF algorithms.

In a parallel processing environment, we can take

advantage of multiple processing units to perform calcu-

lations in parallel. In this environment, complex programs

can be fragmented into simpler tasks, which are then dis-

tributed to multiple processing units that run concurrently.

At times, it is required to perform similar calculations on a

vast amount of data; if the data chunks are distributed to

multiple processing units performing similar calculations,

the execution time can be significantly reduced. Likewise,

frames of images in SFF can be redistributed to multiple

processing units to calculate their focus measures. Hence,

the purpose of testing focus-measuring techniques using

different numbers of processors (P) is to analyze the

speedup behavior and to then optimize the value of P for

each focus-measuring algorithm.

2 Parallel computing

In parallel computing, one or more instructions of a program

are concurrently executed. Larger computing problems

are broken up into smaller tasks, which run simultaneously

[7–9]. Parallel computing can be performed at various levels:

bit-level parallelism, instruction-level parallelism, data-

level parallelism, and task-level parallelism.

Bit-level and instruction-level parallelisms are carried

out in the hardware of the computing machine. Bit-level

parallelism can be simply defined by the word size of the

processor; with an increase in the word size, the number of

instructions required for the operation can be reduced if the

variables are greater in length than the word size. On the

other hand, for instruction-level parallelism, the instruc-

tions are reordered and regrouped in a way such that the

result of the program does not change and instructions are

executed in parallel. Instruction-level parallelism is per-

formed by pipelining the instructions; pipelining method-

ologies vary from architecture to architecture, and include:

Fig. 2 SFF image sequence

Fig. 3 Box plot of execution time taken by SML Gaussian interpo-

lation algorithm for simulated cone object. The execution time is

along vertical axis and the number of threads is along horizontal axis

Fig. 1 Image-formation phenomenon

J Real-Time Image Proc

123



five-staged pipeline, multi-scale pipelining, and super-

scalar architecture.

Task-level and data-level parallelism [10–16] are

achieved by software applications or operating systems.

In data-level parallelism (also known as loop-level paral-

lelism), the same operations are performed over the same

or different datasets. Distribution of data among the pro-

cessors is then defined by conditions; e.g., if two matrices

A and B are to be added, then the first-half rows of A are

added to the first-half rows of B by Processor 1 and the

second-half rows of A are added to the second-half rows of

B by Processor 2. In this way, the execution time of the

complete operation is halved. In contrast, task-level par-

allelism is a system in which different tasks or sets of

operations are performed on the same or different datasets.

Conditions are applied to assign data or parts of data to

different tasks.

Programming a parallel application is difficult due to

inherent dependencies [17]: flow dependency (when an

instruction is dependent on the previous instruction result),

anti-dependency (instruction requires value that is updated

later), output dependency (when reordering causes the final

result to be changed), race conditions, and constraints such

as synchronization and communication between parallel

tasks. To avoid potential software bugs due to these

dependencies and constraints, a new set of classes (e.g.,

mutual exclusion lock, semaphores, etc.) have to be

introduced for the parallel tasks to be synchronized while

maintaining communication among them.

Different applications have different preferences

according to their usage and requirements. Some applica-

tions require high-accuracy and high-resolution depth

estimation, and thus, require a very large number of image

sequences. In this case, the calculation of the focus mea-

sure requires more time. Hence, utilizing the multiple cores

of the machine will parallelize the calculation, and in this

way, time will be reduced by the speedup factor; speedup is

defined in Eq. (2).

SP ¼
t1
tP

ð2Þ

where, P is the number of processors, t1 is execution time

required by sequential algorithm, tP is execution time

required by parallel algorithm on P processors.

Ideally, the speedup factor should be linear, i.e., SP = P;

however, due to the execution time wasted in communi-

cation and synchronization, SP \ P. As such, a time comes

when an increase in P does not have any effect on SP. Thus,

we have to avoid such a situation, because it causes

redundant usage of resources.

The nonlinear behavior of parallel algorithms is due to

the fact that not all the blocks in code can be parallelized,

adding overhead to the coordination between the

processors. According to Amdahl [18], as in Eq. (3), if a is

the fraction of execution time required by code that cannot

be parallelized, then the maximum possible speedup with

parallelization of a program is:

S ¼ 1

a
; ð3Þ

i.e., if the sequential portion of a program accounts for

10 % of the runtime, we can get no more than a 109

speedup, regardless of how many processors are added.

Thus, the Amdahl law assumes that the number of pro-

cessors will have no effect over sequentially executable

instructions.

The efficiency of an algorithm in utilizing a processor

and its resources is better defined in Eq. (4):

EP ¼
SP

P
¼ t1

P� tP
ð4Þ

where the value typically lies between 0 and 1. For a

sequential algorithm and linear speedup EP = 1; thus, the

efficiency provides a better understanding of parallel per-

formance than the speedup curve.

3 Focus-measuring techniques

Many focus-measuring methods have been reported in

literature [19]. In brief, focus measuring is the sharpness

measuring of an image or region of an image; thus, any

algorithm that measures the gradient or is used in the

detection of edges can also be used for measuring the

focus. The accuracy of the depth-map estimation is highly

dependent on the focus-measuring algorithm as some

algorithms have a higher time complexity with accuracy in

sharpness measurement, and vice versa. Thus, it depends

on the application requirement to determine the tradeoff

between time complexity and the accuracy of results.

However, the parallel implementation of complex focus-

measuring algorithms can reduce the time complexity

problem. In our research, we performed a parallel imple-

mentation of commonly used focus-measuring algorithms.

These algorithms are described briefly in this section.

3.1 Sum-modified Laplacian (SML)

A Laplacian is obtained by summing the second derivative

of an image in the x and y directions, as in Eq. (5).

L ¼ o2Fðx; yÞ
ox2

þ o2Fðx; yÞ
oy2

: ð5Þ

As the Laplacian operator is symmetric, it is very good for

detecting isolated points in an image. However, in the case of

richly textured images, the horizontal and vertical

J Real-Time Image Proc

123



components of the Laplacian operator cancel each other,

generating no response. To overcome this problem, the

Laplacian operator was modified here by squaring the second

derivatives of the horizontal and vertical components of the

Laplacian, and then, summing them, as in Eq. (6).

ML ¼ o2Fðx; yÞ
ox2

� �2

þ o2Fðx; yÞ
oy2

� �2

ð6Þ

Thus, the sum of all ML pixel values in a local window

is known as the sum modified Laplacian (SML) [19, 20]

(Eq. 7). For richly textured images, the SML is quite

effective even if applied at a single pixel; however, Nayar

[6] proposed that it can also provide quite robust results

when applied to weakly textured images.

SML ¼
X

pðx;yÞ2Uðx0;y0Þ

o2Fðx; yÞ
ox2

� �2

þ o2Fðx; yÞ
oy2

� �2

: ð7Þ

He further proposed a Gaussian interpolation, an

approximation technique that gives an even more robust

and refined depth estimation. Three focus values, near the

peak computed by the SML, are subsequently fitted to a

Gaussian model, where the mean value is taken as the

optimal depth value.

3.2 Tenenbaum (TEN)

The Tenenbaum operator [21–23] enhances or maximizes

the gradient magnitude. Mathematically, it is the sum of the

squared responses of the vertical and horizontal components

of a Sobel mask. After applying the Tenenbaum operator, the

focus measure is obtained by summing all elements in a local

window, as mathematically described in Eq. (8).

TEN ¼
X

pðx;yÞ2Uðx0;y0Þ
Gxðx; yÞ2 þ Gyðx; yÞ2
� �2

ð8Þ

3.3 Gray-level variance (GLV)

The gray-level variance (GLV) [21–23] measures the

sharpness of an image by measuring the variance of

intensity values (see Eq. 9). In sharp images, this variance

is higher compared to blurred images.

GLV ¼ 1

N � 1

X
pðx;yÞ2Uðx0;y0Þ

ðg x; yð Þ � lUðx0:y0ÞÞ
2 ð9Þ

where lUðx0:y0Þ is the mean of the neighboring intensity

values of U x0:y0ð Þ.

3.4 M2 focus measure

The M2 focus measure is similar to the Tenenbaum focus

measure method. The M2 method is employed using a

Fibonacci search, which is followed by exhaustive search.

M2 is computed as in Eq. (10):

M2ðx0; y0Þ ¼
XiþN

x¼i�N

XjþN

y¼j�N

Gx x; yð Þ2þGy x; yð Þ2
h i

ð10Þ

where Gx x; yð Þ ¼ Gi xþ 1; yð Þ � Gi x; yð Þ and Gy x; yð Þ ¼
Gi x; yþ 1ð Þ � Gi x; yð Þ

3.5 Discrete cosine transform

Few focus measures have been proposed in the discrete cosine

transform (DCT) domain [24] based on the energy compac-

tion property of its coefficients. In one such case, Baina et al.

[25] proposed that the energy of the AC part of the DCT is a

good approximation of the focus quality. Note that if N 9 N is

an image block and F(u, v) is its DCT, then the focus measure

can be mathematically expressed as in Eq. (11).

FDCT1
¼
XN�1

u¼1

XN�1

v�1

F u; vð Þ2 ð11Þ

Chen [26] then suggested that the ratio between the

energies of the AC and DC parts of the DCT is a better

choice for the focus measure, especially for use in low

contrast images. Note Eq. (12) below, where EAC and EDC

are the respective energies of the AC and DC parts of the

DCT in an image block.

FDCT2
¼ EAC

EDC

: ð12Þ

3.6 Discrete Fourier transform (DFT)

Malik et al. [22] developed a focus-measuring algorithm

based on the optical transfer function of a lens imple-

mented in the Fourier domain, as expressed by Eq. (13).

OM x; yð Þ ¼
XiþN

x¼i�N

XjþN

y¼j�N

abs F�1 F F x; yð Þj j2:
��h

e�r1 K2
xþK2

yð Þ � e�r1 K2
xþK2

yð Þ
� ���i ð13Þ

where abs[] provides only the real part of the complex

number, F is the Fourier transform, and F�1 is the inverse

Fourier transform. In addition, F(x, y) is the image frame,

and the expression e�r1 K2
xþK2

yð Þ � e�r1 K2
xþK2

yð Þ
� �

represents

a band pass filter with cutoff frequencies r1 K2
x þ K2

y

� �
and

r2 K2
x þ K2

y

� �
.

3.7 Discrete wavelet transform

The discrete wavelet transform (DWT) [27] is applied to

the local window of an image frame in order to obtain the

J Real-Time Image Proc

123



approximate (low-frequency component) and details (high-

frequency component) of the image. The ratio of the high-

frequency component to the low-frequency component

gives the focus measure.

3.8 Histogram entropy (HE)

In the histogram of a sharply focused image, two spikes are

usually observed; each corresponds to one side of an edge.

Blurred images do not exhibit this property, though it can

be measured through histogram entropy (HE) using the

mathematical relation in Eq. (14).

HE ¼ �
X

i

P Ið Þ � ln P Ið Þð Þ; P Ið Þ 6¼ 0 ð14Þ

where I is the intensity level and P(I) is the frequency of

occurrence of I in an image. HE is a minimum when P(I) is

zero for all except one value of I, and it is a maximum

when all P(I) are equal. Therefore, the sharp edge will have

less entropy compared to the blurred edge.

4 Setup and implementation

This section describes the parallel implementation of SFF

algorithms. Here, the sequential algorithm is modified to

execute in parallel; only the focus-measuring part of the SFF

algorithm has been parallelized by equally distributing the

number of frames of test samples to the CPU cores. In this

way, each core contributes in parallel to the calculation of

the focus measure, e.g., if a test sample has 80 frames, then

on a two-core machine, the first 40 frames (1–40) will be

assigned to core 1 and the next 40 frames (41–80) will be

assigned to core 2. The CPU time is noted only for

instructions for calculating the focus measure, whereas the

time depleted for the remainder of the SFF algorithm is not

counted (as it is same in every algorithm). Moreover, for

each focus-measuring algorithm and each number of cores,

speedup is calculated by repeating the experiment five times.

Five different samples are used for the 3D shape

recovery. For simplified and speedy results, all samples

were 40 9 40 center cropped; details of the test samples

are given in Table 1. A machine having 29 (2.26 GHz

Quad Core Intel Xeon) processors was used to run the

code. The machine had 6 GB DDR3 RAM running MAC

OS X ver 10.6.8.

5 Results and discussion

Tables 2, 3, 4, 5 and 6 show the speedup for each of the test

objects. Figures 4, 5, 6, 7, 8, 9, 10 and 11 subsequently

depict the speedup versus number of threads behavior/plot

for SML, TEN, M2, GLV, DCT, DFT, HE, and DWT,

respectively. Moreover, each figure shows the plot for all

five samples. Table 2 also shows the upper- and lower-

bound confidence interval of 95 % for speedup. Figure 3 is

the boxplot of execution time taken by SML Gaussian

interpolation algorithm for simulated cone object. It can be

observed that very few outliers are present, i.e., variation of

execution time by the same algorithm for the same object

with the same number of threads is minute. All the other

cases show similar behavior.

When analyzing the behavior of the SML using a

Gaussian interpolation in parallel computing (Fig. 4), it can

be seen that the speedup increases for all objects with the

use of up to three cores; after which, it starts declining.

Here, 1.31 is the maximum speedup achieved, at an effi-

ciency of 43 %. Surprisingly, all objects generated a

diverse speedup plot. However, due to the use of Gaussian

interpolations, the time of search for local maxima depends

on the data, i.e., for some images, local maxima are found

early, whereas for others they are found late.

Based on the analysis of the DCT speedup (Fig. 8),

it can be concluded that a higher number of object images

improves the efficiency. Simulated and real cones have the

same and highest number of images (Table 1) and their

speedup curves are also seen to be both identical and the

Table 1 Test samples

Test object Simulated cone Real cone TFT LCD cell Slanted plane US 1 cent

Number of frames 97 97 60 87 68

Single frame

J Real-Time Image Proc

123



Table 2 Results for simulated cone

Thread

1

Thread

2

Thread

3

Thread

4

Thread

5

Thread

6

Thread

7

Thread

8

SML with Gaussian interpolation

557.91 542.23 513.24 510.26 498.36 526.87 532.65 534.27

558.62 543.87 515.68 498.56 497.33 530.99 533.78 535.27

557.21 541.95 514.63 497.57 488.25 531.62 531.27 534.62

556.27 542.68 519.27 511.2 496.22 532.66 532.98 533.29

558.92 543.81 512.12 499.8 487.56 532.3 533.65 532.96

Average 557.79 542.91 514.99 503.48 493.54 530.89 532.87 534.08

Execution time confidence interval of 95 % (upper

range)

559.12 544.01 518.40 511.76 500.01 533.78 534.11 535.26

Execution time confidence interval of 95 % (lower

range)

556.45 541.80 511.57 495.18 487.07 527.98 531.61 532.9

Speedup 1 1.02 1.08 1.1 1.13 1.05 1.04 1.04

Speedup confidence interval of 95 % (upper range) 1 1.027 1.07 1.09 1.11 1.04 1.046 1.044

Speedup confidence Interval of 95 % (Lower Range) 1 1.02 1.08 1.12 1.14 1.05 1.04 1.04

Tenenbaum (TEN)

245.39 142.3 105.94 89.51 84.1 85.72 83.23 85.81

247.05 141.1 105.97 90.52 85.36 85.32 82.35 83.29

246.69 141.47 105.49 90.7 84.39 85.48 81.78 80.6

246.44 141.32 106.7 91.19 84.99 85.32 82.67 83.56

249.01 140.05 106.93 90.68 85.16 84.49 83.23 84.18

Average 246.92 141.25 106.21 90.52 84.8 85.27 82.65 83.49

Execution time confidence interval of 95 % (upper

range)

248.56 142.25 106.94 91.28 85.46 85.84 83.41 85.83

Execution time confidence interval of 95 % (lower

range)

245.27 140.24 105.47 89.75 84.13 84.69 81.88 81.14

Speedup 1 1.74 2.35 2.72 2.91 2.89 2.98 2.95

Speedup confidence interval of 95 % (upper range) 1 1.74 2.32 2.72 2.90 2.89 2.97 2.89

Speedup confidence interval of 95 % (lower range) 1 1.74 2.32 2.73 2.91 2.89 2.99 3.02

M2

88.82 55.79 45.62 39.6 37.5 37.04 36.66 37.22

88.35 54.66 43.7 39.56 38.11 37.27 36.12 36.72

88.99 55.13 43.45 38.57 38.6 42.33 36.82 36.98

89.02 55.75 43.45 38.88 38.09 36.48 37.13 36.91

90.52 55.19 43.15 39.17 37.91 36.89 37.16 37.48

Average 89.14 55.3 43.87 39.16 38.04 38 36.78 37.06

Execution time confidence interval of 95 % (upper

range)

90.15 55.89 45.11 39.70 38.53 41.02 37.30 37.42

Execution time confidence interval of 95 % (lower

range)

88.12 54.71 42.63 38.60 37.54 34.97 36.25 36.69

Speedup 1 1.61 2.03 2.27 2.34 2.34 2.42 2.4

Speedup confidence interval of 95 % (upper range) 1 1.61 1.99 2.27 2.33 2.19 2.41 2.40

Speedup confidence interval of 95 % (Lower Range) 1 1.61 2.06 2.28 2.34 2.51 2.43 2.40

Grey level variance (GLV)

22.12 10.92 7.9 5.84 4.9 4.22 3.94 3.49

21.49 10.91 7.84 5.83 4.85 4.16 3.82 3.58

21.45 10.91 7.8 5.84 4.83 4.2 3.81 3.52

21.41 10.95 7.8 5.85 4.85 4.2 3.81 3.55

21.42 10.91 7.814 5.83 4.84 4.22 3.82 3.56

Average 21.58 10.92 7.83 5.84 4.85 4.2 3.84 3.54

J Real-Time Image Proc

123



Table 2 continued

Thread

1

Thread

2

Thread

3

Thread

4

Thread

5

Thread

6

Thread

7

Thread

8

Execution time confidence interval of 95 % (upper

range)

21.956 10.942 7.883 5.848 4.887 4.23 3.91 3.584

Execution time confidence interval of 95 % (lower

range)

21.2 10.898 7.779 5.828 4.82 4.17 3.77 3.496

Speedup 1 1.97 2.75 3.69 4.44 5.13 5.61 6.09

Speedup confidence interval of 95 % (upper range) 1 2.00 2.78 3.75 4.49 5.19 5.61 6.12

Speedup confidence interval of 95 % (lower range) 1 1.94 2.72 3.63 4.39 5.08 5.62 6.06

Discrete cosine transform (DCT)

27.24 19.95 15.47 13.02 11.59 10.69 10.34 10.57

27.12 20.26 15.45 13.19 11.72 10.64 10.43 10.19

26.88 20.23 16.01 12.92 11.6 10.66 10.3 10.73

26.96 20.33 15.57 12.96 11.69 10.73 10.48 10.37

26.87 20.02 15.53 12.71 11.53 10.65 10.84 10.45

Average 27.02 20.16 15.61 12.96 11.63 10.67 10.48 10.46

Execution time confidence interval of 95 % (upper

range)

27.214 20.362 15.893 13.176 11.722 10.719 10.744 10.715

Execution time confidence interval of 95 % (lower

range)

26.814 19.954 15.319 12.744 11.53 10.629 10.212 10.209

Speedup 1 1.35 1.74 2.1 2.34 2.55 2.59 2.6

Speedup confidence interval of 95 % (upper range) 1 1.33 1.71 2.06 2.32 2.53 2.53 2.53

Speedup confidence interval of 95 % (lower range) 1 1.34 1.75 2.10 2.32 2.52 2.62 2.62

Discrete Fourier transform (DFT)

155.29 88.13 60.93 54.22 51.41 49.24 50.19 50.78

156.59 89.77 64.73 55.18 50.39 49.95 51.96 50.92

157.19 90.27 69.19 55.15 51.33 49.89 51.86 51.1

156.89 90.6 68.16 55.49 52.08 49.67 51.61 51.01

156.38 88.3 68.23 55.31 50.58 50.13 51.28 50.86

Average 156.47 89.42 66.24 55.07 51.16 49.78 51.38 50.94

Execution time confidence interval of 95 % (upper

range)

157.37 90.824 70.497 55.684 52.006 50.2 52.268 51.089

Execution time confidence interval of 95 % (lower

range)

155.566 88.004 62 54.457 50.31 49.352 50.492 50.779

Speedup 1 1.75 2.36 2.84 3.06 3.14 3.05 3.07

Speedup confidence interval of 95 % (upper range) 1 1.73 2.23 2.82 3.02 3.13 3.01 3.08

Speedup confidence interval of 95 % (lower range) 1 1.76 2.50 2.85 3.09 3.15 3.08 3.06

Histogram entropy (HE)

90.13 63.78 54.43 51.36 50.66 49.81 48.74 48.83

89.67 63.02 53.84 50.47 49.91 48.65 48.71 48.62

90.12 63.25 53.88 49.6 49.53 49.11 48.32 48.35

89.95 63.47 53.96 50.12 49.57 48.93 48.06 48.51

89.65 63.01 54.03 50.52 49.94 48.59 48.37 48.58

Average 89.9 63.3 54.03 50.41 49.92 49.02 48.44 48.58

Execution time confidence interval of 95 % (upper

range)

90.194 63.71 54.321 51.213 50.485 49.627 48.795 48.795

Execution time confidence interval of 95 % (lower

range)

89.613 62.901 53.735 49.615 49.359 48.409 48.085 48.361

Speedup 1 1.42 1.66 1.78 1.8 1.83 1.85 1.85

Speedup confidence interval of 95 % (upper range) 1 1.41 1.66 1.76 1.78 1.81 1.84 1.84

Speedup confidence interval of 95 % (lower range) 1 1.42 1.66 1.80 1.81 1.85 1.86 1.85

J Real-Time Image Proc

123



most efficient. In contrast, a TFT LCD has the least amount

of images and its speedup curve is the least efficient.

A radical increase in speedup can be seen for up to five

workers for the DCT.

Unlike the DCT and SML with Gaussian interpolations,

all other methods for focus measure, i.e., TEN (Fig. 4), M2

(Fig. 6), GLV (Fig. 7), DFT (Fig. 9), HE (Fig. 10), and

DWT (Fig. 11), have similar speedup characteristics with

respect to data or specimens under observation. However,

the speedup efficiency varies from one focus measure to

another. Among these algorithms, GLV (Fig. 7) has the

best speedup performance, which is almost linear up to four

workers. In fact, GLV is seen to be vastly superior to all

other algorithms in terms of speedup performance. More-

over, except for DCT and SML with Gaussian interpola-

tions, all other algorithms have speedup curves that shoot

Table 3 Results for real cone

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7 Thread 8

SML (GI) 1 1.16 1.20 1.22 1.18 1.24 1.24 1.22

TEN 1 1.71 2.28 2.70 2.822 2.88 2.93 2.82

M2 1 1.58 1.94 2.20 2.203 2.26 2.28 2.22

GLV 1 1.90 2.74 3.59 4.42 5.028 5.60 6.01

DCT 1 1.31 1.70 2.09 2.29 2.52 2.55 2.57

DFT 1 1.76 2.52 2.80 3.03 3.04 2.97 2.97

HE 1 1.42 1.64 1.77 1.76 1.77 1.79 1.77

DWT 1 1.78 2.52 3.02 3.17 3.39 3.50 3.61

Table 4 Results for TFT LCD

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7 Thread 8

SML (GI) 1 1.21 1.31 1.29 1.28 1.27 1.26 1.23

TEN 1 1.74 2.33 2.80 2.92 2.99 2.91 2.82

M2 1 1.60 2.01 2.27 2.32 2.34 2.30 2.23

GLV 1 1.91 2.70 3.42 4.09 4.99 5.35 5.67

DCT 1 1.13 1.42 1.53 1.68 1.80 1.90 1.83

DFT 1 1.76 2.53 2.96 3.02 3.09 3.05 3.00

HE 1 1.42 1.66 1.78 1.78 1.80 1.80 1.80

DWT 1 1.77 2.45 2.99 3.204 3.373 3.431 3.409

Table 2 continued

Thread

1

Thread

2

Thread

3

Thread

4

Thread

5

Thread

6

Thread

7

Thread

8

Discrete wavelet transform (DWT)

62.42 34.8 25.66 20.57 19.24 18.74 17.5 17.62

62.4 34.93 24.96 20.73 19.92 18.4 17.21 17.88

62.46 34.18 25.12 20.17 19.38 18.61 17.18 17.93

62.47 33.87 25.12 20.64 19.62 18.72 17.27 17.71

62.7 34.38 24.96 20.45 19.34 18.49 17.36 17.89

Average 62.49 34.43 25.16 20.51 19.5 18.59 17.3 17.81

Execution time confidence interval of 95 % (upper

range)

62.64 34.975 25.522 20.781 19.839 18.774 17.465 17.972

Execution time confidence interval of 95 % (lower

range)

62.334 33.889 24.806 20.243 19.161 18.41 17.143 17.64

Speedup 1 1.81 2.483 3.046 3.204 3.361 3.611 3.509

Speedup confidence interval of 95 % (upper range) 1 1.79 2.45 3.01 3.15 3.33 3.58 3.48

Speedup confidence interval of 95 % (lower range) 1 1.83 2.51 3.07 3.25 3.38 3.63 3.53

J Real-Time Image Proc

123



upwards until they reach thread 4 (Figs. 5, 6, 9, 10, 11),

after which they start losing speedup efficiency or become

nearly constant. Thus, it can be concluded that the optimal

number of processors or workers for improving the

speedup efficiency of most focus-measuring algorithms is

four.

Figures 12 and 13 show the combined speedup results

for various focus-measuring techniques applied over

simulated cones and TFT LCD cells. These figures provide

a more focused analysis of speedup among the different

algorithms; both depict the common speedup characteris-

tics. The GLV focus measure apparently shows the best

speedup performance, whereas the SML with Gaussian

interpolation is least efficient in terms of parallel imple-

mentation. With respect to the other algorithms, a similar

trend follows for both specimens, i.e., speedup

Fig. 4 Speedup chart for SML

Gaussian interpolation

Table 5 Results for slanted plane

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7 Thread 8

SML (GI) 1 1.09 1.13 1.15 1.14 1.10 1.12 1.10

TEN 1 1.73 2.31 2.76 2.80 2.87 2.89 2.90

M2 1 1.59 1.97 2.22 2.23 2.26 2.27 2.24

GLV 1 1.93 2.77 3.54 4.37 5.12 5.52 5.89

DCT 1 1.30 1.66 2.02 2.20 2.39 2.43 2.45

DFT 1 1.77 2.53 2.94 2.96 3.04 2.98 2.98

HE 1 1.41 1.64 1.76 1.75 1.78 1.78 1.78

DWT 1 1.80 2.48 3.10 3.24 3.377 3.50 3.611

Table 6 Results for microscopic coin

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7 Thread 8

SML (GI) 1 1.10 1.15 1.15 1.15 1.15 1.13 1.12

TEN 1 1.74 2.28 2.80 2.85 2.86 2.92 2.88

M2 1 1.62 2.00 2.30 2.30 2.30 2.34 2.31

GLV 1 1.94 2.78 3.48 4.31 4.86 5.61 5.83

DCT 1 1.19 1.63 1.64 1.95 2.06 2.08 2.05

DFT 1 1.76 2.56 2.95 3.04 3.09 3.09 3.05

HE 1 1.41 1.66 1.79 1.77 1.79 1.81 1.80

DWT 1 1.79 2.456 2.99 3.18 3.29 3.48 3.42

J Real-Time Image Proc

123



Fig. 5 Speedup chart for TEN

Fig. 6 Speedup chart for M2

Fig. 7 Speedup chart for GLV

J Real-Time Image Proc

123



Fig. 8 Speedup chart for DCT

Fig. 9 Speedup chart for DFT

Fig. 10 Speedup chart for HE

J Real-Time Image Proc

123



Fig. 13 Speedup results of TFT

LCD cell at various focus

measures

Fig. 11 Speedup chart for

DWT

Fig. 12 Speedup results of

simulated cone at various focus

measures

J Real-Time Image Proc

123



performance decreases from DWT, DFT, TEN, M2, to HE,

whereas the performance curve of DCT and M2 compete

with each other in various cases.

6 Conclusions

Parallel processing compensates for the need for high fre-

quency clock cycles in hardware, which lowers the power

consumption cost and uses of additional hardware. On the

other hand, by introducing parallel processing in the soft-

ware, optimal use can be made of the hardware resources in

the machine. It was also noted that parallel processing is

more complex than the sequential processing and may

generate inconsistent results if not carefully programmed;

however, such inconsistencies can be avoided by use of

special classes that effectively allocate resources while the

communication and synchronization of different processes

run in parallel. As a continuing effort, since some complex

tasks cannot be fully parallelized, the sequential part of

these processes can cause the speedup curve to become

constant or decline—a condition that requires further

investigation.

In this article, we parallelized a few of the focus-mea-

suring algorithms known in the literature. These algorithms

have been parallelized at the data/loop-level (Single Pro-

gram Multiple Data) [12, 15]. We then worked to deter-

mine the optimal number of workers required for

parallelizing the focus-measuring algorithms. During this

analysis, some interesting facts were unveiled. First, the

speedup efficiency of some focus-measuring algorithms

was found to depend on the data content and quantity. In

addition, higher searches for local maxima in the Gaussian

interpolation of SML cause a decrease in the speedup

efficiency, and the speedup efficiency of the DCT focus

measure increases with an increase in the number of ima-

ges in the sample. The GLV focus measure has excellent

speedup performance as its speedup curve is approximately

linear. Importantly, for most of the algorithms discussed in

this article, the optimal number of processors required for

parallelization is four; this optimized value is relative to the

machine used in experimentation. Thus, the parallelization

of focus-measuring algorithms is found to be advantageous

for SFF, i.e., applications that require less time or use large

image sequences for accuracy and robustness can make use

of parallelization to expedite their processing.

References

1. Yemez, Y., Schmitt, F.: 3D reconstruction of real objects with

high resolution shape and texture. Image Vis. Comput. 22,

1137–1153 (2004)

2. Dipanda, A., Woo, S.: Towards a real-time 3D shape recon-

struction using a structured light system. Pattern Recognit. 38,

1632–1650 (2005)

3. Mamassian, P., Knill, D.C., Kersten, D.: The perception of cast

shadows. Trends Cogn. Sci. 2, 288–295 (1998)

4. Norman, J.F., Lee, Y.L., Phillips, F., Norman, H.F., Jennings,

L.R., McBride, T.R.: The perception of 3-D shape from shadows

cast onto curved surfaces. Acta Psychol. 131, 1–11 (2009)

5. Li, M., Kambhamettu, C., Stone, M.: Nonrigid motion recovery

for 3D surfaces. Image Vis. Comput. 25, 250–261 (2007)

6. Nayar, S.K., Nakagawa, Y.: Shape from focus: an effective

approach for rough surfaces. In: Proceedings of IEEE Interna-

tional Conference on Robotics and Automation, pp. 218–225

(1990)

7. Liu, F., Sosonkina, M.: A multilevel parallelism support for

multi-physics coupling. Proc Comput Sci 4, 261–270 (2011)

8. Plaza, A.: Parallel techniques for information extraction from

hyperspectral imagery using heterogeneous networks of work-

stations. J. Parallel Distrib. Comput. 68, 93–111 (2008)

9. Sutter, B.: On the use of subword parallelism in medical image

processing. Parallel Comput. 24, 1537–1556 (1998)

10. Beynon, M.: Processing large-scale multi-dimensional data in

parallel and distributed environments. Parallel Comput. 28,

827–859 (2002)

11. Chang, W., Ho, M.S.: Exploitation of parallelism to nested loops

with dependence cycles. J. Syst. Archit. 50, 729–742 (2004)

12. Huang, T.: A practical run-time technique for exploiting loop-

level parallelism. J. Syst. Softw. 54, 259–271 (2000)

13. Romero, L., Ortigosa, E., Zapata, E.: Data-task parallelism for the

VMEC program. Parallel Comput. 27, 1347–1364 (2001)

14. Nicolescu, C.: A data and task parallel image processing envi-

ronment. Parallel Comput. 28, 945–965 (2002)

15. Singh, A.: An integrated performance analysis tool for SPMD

data-parallel programs. Parallel Comput. 23, 1089–1112 (1997)

16. Hermenegildo, M.: Relating data-parallelism and parallelism in

logic programs. Comput. Lang. 22, 143–163 (1996)

17. Hossain, M.: Impact of data dependencies in real-time high perfor-

mance computing. Microprocess. Microsyst. 26, 253–261 (2002)

18. Amdahl, G.M.: Validity of the single processor approach to

achieving large scale computing capabilities. Business 30, 19–20

(2007)

19. Aslantas, V., Kurban, R.: A comparison of criterion functions for

fusion of multi-focus noisy images. Optics Commun. 282,

3231–3242 (2009)

20. Zhao, H., Li, Q., Feng, H.: Multi-focus color image fusion in the

HSI space using the sum-modified-Laplacian and a coarse edge

map. Image Vis. Comput. 26, 1285–1295 (2008)

21. Rahmat, R., Malik, A.S., Faye, I., Kamel, N.S.: An overview of

lulu operators and discrete pulse transform for image analysis.

Imag. Sci. J. 59(5) (2011)

22. Rahmat, R., Malik, A.S., Kamel, N.S.: 3-D content generation

using optical passive reflective techniques. The 15th IEEE

International Symposium on Consumer Electronics, Singapore

(2011)

23. Rahmat, R., Malik, A.S., Kamel, N.S.: Comparison of LULU and

median filter for image denoising. 3rd Conference on Signal

Acquisition and Processing (ICSAP2011), Singapore (2011)

24. Haghighat, M.B.A., Aghagolzadeh, A., Seyedarabi, H.: Multi-

focus image fusion for visual sensor networks in DCT domain.

Comput. Electr. Eng. (2011)

25. Baina, J., Dublet, J.: Automatic focus and iris control for video

cameras. Image Processing, IEEE Fifth International Conference

on Image Processing and its Applications, pp. 232–235 (1995)

26. Chen, H.H.: Robust focus measure for low-contrast images.

Digest of Technical Papers International Conference on Con-

sumer Electronics, IEEE, pp. 69–70 (2006)

J Real-Time Image Proc

123



27. Kautsky, J.: A new wavelet-based measure of image focus. Pat-

tern Recognit. Lett. 23, 1785–1794 (2002)

Author Biographies

Jawad Humayun is a researcher in Department of Electrical and

Electronic Engineering at Universiti Teknologi PETRONAS. He

received his B.Sc. in EE from National University of Computer and

Emerging Sciences (NUCES), Lahore, Pakistan. His research interests

include Medical imaging, 3D imaging and Machine Learning.

Aamir Saeed Malik is an Associate Professor in Department of

Electrical and Electronic Engineering and member of Centre for

Intelligent Signal and Imaging Research at Universiti Teknologi

PETRONAS. He received his BS in EE from Pakistan while MS and

Ph.D. from Republic of Korea. He has more than 8 years of working

experience. His research interests include 3D imaging, medical

imaging and CBIR.

J Real-Time Image Proc

123


	Real-time processing for shape-from-focus techniques
	Abstract
	Introduction
	Parallel computing
	Focus-measuring techniques
	Sum-modified Laplacian (SML)
	Tenenbaum (TEN)
	Gray-level variance (GLV)
	M2 focus measure
	Discrete cosine transform
	Discrete Fourier transform (DFT)
	Discrete wavelet transform
	Histogram entropy (HE)

	Setup and implementation
	Results and discussion
	Conclusions
	References


