



Abstract— Cloud enabled robotics is currently understood as

one or many robotic clients making use of the resources and

services made available by remote servers placed across the

network cloud. These servers provide gateways to access the

infrastructure, platform, software, algorithm or process as a

service. Tapping into online infrastructure and knowledge saves

the cost of carrying all required capabilities onboard the robot.

In peer-to-peer cloud computing, every robot can act as a

service provider. This paper presents a meta-model for enabling

agent driven trade over local and global network clouds. The

presented meta-model is one of the five views of HTM5, a five-

view hyperactive transaction meta-model for multi agent system

design. The meta-model represents the robots by their

respective agents in the cloud, along with special agents which

host and maintain service and demand registry. The robotic

agents may have predefined relationships and service contracts

with other robotic agents. Special agents are present in the

system to maintain the trade between agents which have a

predefined relationship or a trade contract. Unlike client-server

based cloud robotics, the peer-to-peer structure enables a more

active exchange of services between the robots. The presence of

a relationship and contract based mechanism for trade

preserves the fundamental business logics of cloud computing.

I. INTRODUCTION

Cloud enabled robotics or cloud robotics is an emerging
trend in distributed intelligent systems. In the past decade
there has been a remarkable improvement in the speed and
reach of the computer networks. Lower costs of network
enabled devices and connectivity brought us in the age of
anywhere-anytime computing. The cloud computing business
models have made network enabled sharing of computing
infrastructure, platforms and software systems a reality.
Network (cloud) enabled robotic clients can make use of
cloud computing business models to share resources and
services. A robot may now carry hardware only for a limited
set of capabilities onboard and can theoretically access all
infrastructure and knowledge available online. Cloud enabled
robotics present a greater canvas of applications for designers
to work upon and with that arises a need for effective tools to
design and model such systems.

Cloud robotics is currently seen as a client server system
where robotic clients tap into the online resources through one

* The current research is being funded by the Laboratory Le2i (CNRS

5158, Le-Creusot, FRANCE), Bourgogne regional council (Regional French

administration) and the Universiti Technologi Petronas (Perak, Malaysia).

Vineet Nagrath is with Laboratoire Le2i, UMR CNRS 5158, Le Creusot,
FRANCE (+33666999529; Vineet.Nagrath@gmail.com)

Olivier Morel is with Laboratoire Le2i, UMR CNRS 5158, Le Creusot,

FRANCE (Olivier.Morel@u-bourgogne.fr)
Aamir Saeed Malik is with Department EE, Universiti Technologi

Petronas, Perak, MALAYSIA (Aamir_Saeed@petronas.com.my)

M Naufal B M Saad is with Department EE, Universiti Technologi
Petronas, Perak, MALAYSIA (Naufal_Saad@petronas.com.my)

Fabrice Meriaudeau is with Laboratoire Le2i, UMR CNRS 5158, Le

Creusot, FRANCE (Fabrice.Meriaudeau@u-bourgogne.fr)

or many web servers. This approach is useful as many online
web centers provide useful knowledge for robots such as
maps, image and text based web search and algorithmic
support. There is however an interesting opportunity in
enabling a peer-to-peer cloud robotic framework where every
robot in the system can act as a server offering its hardware
and knowledge resources to its associated robots. The
dependency of all robots on a centralized server is removed in
a peer-to-peer system. This system also allows individual
robots to share their resources as a service, thus it’s a more
effective use of available system resources. By the presence
of a mechanism to implement cloud computing business
logics in such trade transactions between robots, robots could
share their resources in exchange for other resources or an
actual transfer of money. This mechanism should be useful
for robots working in a predefined team as well as for trade of
services between robots of random affiliations. In the current
paper we present an agent oriented model for enabling peer-
to-peer cloud robotic trade.

The concept of agents is essentially an extension to the
concept of objects in object oriented methodology. An object
is specified by its class attributes and operations which can be
accessed from other objects. This open access to an object’s
interior functionality compromises its autonomy. What makes
agents different from objects is the autonomy an agent has
over its own operations. Agents are deployed in various
domains with different functionalities and thus there is no
consensus on the definition of an agent. In general, an
autonomous entity in a system of computing entities
interacting with other autonomous entities with a mandate to
complete their personal and shared goals is known as an agent
[1], [2] and [3].

The concept of agency [4] however explains a wider set of
abstractions associated with an agent. Apart from autonomy,
an agent should be heterogeneous in design giving its
designer independence to design it in any manner irrespective
of the other agents and the network administration. Its
interactions must protect its autonomy and the
communication protocol should not reveal its internal design.
The commitments that an agent makes to other agents should
be based on a social concept with a debtor, a creditor, action
and a context. Unlike components, the receiving party (agent)
takes the ownership/responsibility for an action taken when a
message is received and not the party (agent) that sends the
message. An agent should have mental states, explicit goals
and knowledge and none of these should be in public domain.
The above characteristics of an agent make it ideal for a
business logic implementation where it preserves the
autonomy of the entity it is representing. In our view, agents
present an excellent methodology for an open and peer-to-
peer implementation of cloud computing enabled robotics.

An agent based approach to cloud robotics may be more
suited for designing intelligent robotic systems because agent

Agent driven Peer-to-Peer Cloud Robotics*

V. Nagrath, O. Morel, A. Malik, N. Saad, F. Meriaudeau

Figure 2. Model Driven Architecture adaptation for the robotic

product development in the industry

Figure 1. V3CMM: A 3-view component meta-model for robotic

software development.

systems are essentially one of the two subdomains of
distributed artificial intelligence or DAI [5]. Distributed
problem solving (DPS) is the subdomain of DAI which deals
with the distribution of the process of problem solving while
multi agent systems (MAS) [6] deals with the interaction and
behavior related complexities in a DAI system. A distributed
intelligence system reaches a state of intelligence by various
simple competitions and collaborations in its members which
give equal importance to their personal and collective goals
[7]. Multi agent systems are systems of autonomous
computational entities with objectives and roles which are
specific, and which work in an environment with other
autonomous computational entities which may have different
roles and objectives [8]. In our opinion, multi agent system
based cloud robotics could be a useful construct for the
implementation of peer-to-peer cloud computing business
model. The infrastructure that a peer-to-peer cloud computing
platform may provide will be ideal for scalable and
heterogeneous multi agent systems and could lead to a
generation of intelligent robotic systems.

II. MODEL DRIVEN ENGINEERING

A model of a system can be simply defined as a set of
statements about the system being studied [9]. The statements
that form a model of a system should explain the working of
the system or describe its behaviour in various scenarios. A
meta-model is a model that describes other models, i.e. the
system being studied in a meta-model is a model itself [9].
The statements made in a meta-model thus describe how a
model has to be made. The engineering approach in which the
designs are developed in high abstraction leaving aside the
lower level implementation details is known as model driven
engineering or MDE. In MDE, the implementation details are
specified at a later phase of the development cycle giving an
abstract and rapid prototyping of the higher level design.
MDE also encourages a greater client participation in the
design process as non-technical parties can easily understand
and contribute to an abstract model of the system. The
software industry and industries where implementation
complexities are high, have recently adopted the MDE

methodology for product development. Multi agent systems
in general are an ideal candidate for the use of MDE.
Moreover, the implementation level diversities of a multi
agent system that is used to represent a peer-to-peer cloud
robotic system makes it even more necessary to use a MDE
based approach towards its design. In our current work, we
have thus decided to take a model based approach towards
specification and development of the software system.

In the year 2003, a guide to model driven architecture
(MDA) [10] was released by the object management group
(OMG), a consortium of computer industry. Since then, MDA
has been popular in the industry and is being used for
software development of complex systems. The three layers
of OMG's MDA offer flexibility and abstraction for different
phases and depths in the design process. Platform specific
(PSM), platform independent (PIM) and computation
independent (CIM) are the three models that specify the three
layers of MDA. One of the adaptations of OMG's MDA is
presented in the Fig. 1. The example shows how MDA is used
for product development in the robotic industry [11]. Ideas
from the problem space are converted to a model by the
domain experts. This top layer model is computation
independent and uses MDA's computation independent
model. Later on, the software designers convert CIM to a
MDA's platform independent model which is at a lower
abstraction layer. In the next step the software developers
specify MDA's platform specific model and thus the system
model is ready for implementation. This system model is then
used to realize the system in the solution space.

Some systems may be so complex that a single model
might not give a simplified picture of the system. In such
cases, more than one model is used to represent different
features of the system. These different models of the same
system are known as different ‘views’ of the system. A multi
view system provides better readability of the design and this
kind of system modelling is called multi-view modelling. One
example of a multi-view modelling is V3CMM [11], a three
view meta-model used in software development for robotic
systems (see Fig. 2). The structural view of V3CMM is a
model for the structural design elements of the robotic
system, coordination view models the way the system handles
events and the algorithmic view is a model for working logics
of system's individual modules. The model being developed
by the authors is a five view hyperactive transaction meta-
model for multi agent design (HTM5), while the current paper
explains the view (sub-model) which specifies the trade
behavior of the multi agent system. We present our idea of a
peer-to-peer cloud robotic system using the trade-view of the
HTM5 meta-model. Section III of the current paper gives a

Figure. 3 HTM5: A five view hyperactive transaction meta-model

for multi agent system design.

Figure. 4 Different categories of HTM5 agent-components.

brief overview of HTM5 while Section IV presents the
elements and workflow of a peer-to-peer cloud robotic system
using the trade view of the HTM5 meta-model.

III. HTM5: A FIVE VIEW HYPERACTIVE TRANSACTION

META-MODEL

HTM5: A five view hyperactive transaction meta-model is
a meta-model for designing multi-agent systems (MAS). It is
based on the model driven architecture (MDA) guide of the
object management group (OMG) [10]. Like MDA (see Fig.
1), HTM5 is a 3 layered model with computation
independent, platform independent and platform specific
layers (see Fig. 3). The five views (sub-models) of HTM5 are
designed to capture different aspects of a multi agent system
design and are named structural, relational, trade,
hyperactivity and behavioural views.

A. HTM5 anatomy

The structural view models the MAS structure and
physical locations of different agents. This view also specifies
the hardware (agent hosts) on which a particular agent is
hosted, and the connections (kind and name of networks)
among various agents. The relational view models agent
relationships. Agent interaction and their relative roles in the
multi agent system are based on the kind of relationship that
exists between them. The trade view specifies the trade of
services between agents. The locations of services and the
demands associated to those services are specified in this
model. The mechanism (e.g. service and demand registry) and
data (e.g. cost variables) that governs the trade are also
specified in this view. The hyperactivity view models the
hyperactivity [12] in a multi agent system, which is an agent's
ability to transmit knowledge to agents which are associated
to it. Hyperactivity mechanism is a controlled release of an
agent's autonomy to provide operational and design
flexibility. The behaviour of the multi agent system at
various layers is specified in the behavioural view. A step by
step sequence of events and its reaction by the system defines
the system's respond to a scenario.

In addition to the five main views of HTM5, there are four
hyperactivity sub-views (which are placed under

hyperactivity view) for capturing hyperactivity in structure,
relational, trade and behavioural views. The machine
descriptor model (see Fig. 3) for hardware (agent hosts) and
agent relation charts (ARCs) [13] (In computation
independent layer) are some other components of HTM5. For
the current paper, we will limit ourselves to the description of
HTM5-Trade view and key elements of ARCs required to
present the idea of peer-to-peer cloud robotic implementation
using multi agent systems in Section IV.

B. Agents, Merges and Relations

HTM5 model proposes differentiating the agents into
categories (see Fig. 4). Agents in HTM5 are entities that
represent a software construct (base software) on the cloud.
More than one agent may be hosted on a hardware (agent
host), and thus a hardware may be represented by more than
one agents. HTM5 agent components have a set of control
parameters which governs its internal state and decision
making logic. A "passive" agent in HTM5 is an agent in
which the control parameters are constants while an "active"
agent has an update mechanism for the control parameters.
The update or activity mechanism of an agent may be based
on internal communication with the base software or on the
transactions that takes place with other agents in the system.
Update of an agent's control parameters based on external
transactions does not compromise its autonomy as the update
mechanism is internal to an agent. HTM5 proposes the
concept of hyperactivity [12] where an agent's autonomy is
released through a controlled mechanism. Agents which have
a hyperactivity mechanism allowing specific agents
(associated agents) to update its control parameters are called
"hyperactive" agents. Hyperactivity mechanism gives
flexibility to a designer to reduce an agent's autonomy when
needed and induce an object like character in an agent.

An HTM5 agent may have managerial functionalities
which are meant to keep the multi agent system run smoothly.
For example an agent may manage addition or removal of
members to the system, spread or combine information
coming from different agents. The designer may choose to
keep these managerial functionalities of an agent separate
from its other responsibilities by placing them in a separate
agent. An HTM5 agent dedicated to these managerial
functionalities is known as a “merge-agent" or simply a
"merge". Similarly, agents dedicated to maintaining a
relationship between other agents are called "relational-
agents" or "relations". A "relation" agent maintains registry
for relationship based trade (collaborations) and holds
relationship data parameters. Merges and relations are agents

Figure. 5 Design elements of Trade-View Agent Relation Charts

Figure. 6 Class clustering in HTM5 model for platform

independent and platform specific agent-component

like any other agent in HTM5 based system, and are different
only because they are dedicated to specific managerial roles
in the multi agent system. Like agents, merges and relations
can be passive, active or hyperactive (see Fig. 4).

C. HTM5 Trade view

 The computation independent layer of HTM5-Trade
view consists of trade view agent relation chart (T-
ARC) [13]. Fig. 5 displays elements of T-ARC that
are used to model the relation based trade logics of
the multi agent system. HTM5 agent components
(agents, merge and relations) which are running on
the same hardware device are called co-hosted
components. A "cloud" is any computer network that
establishes a connection between agents. There may
be more than one kind of clouds (networks) in the
system and HTM5 ARCs represents different kinds of
networks by unique numerals.

 A "service" could be any sharable resource that an
agent is offering to other agents for use. T-ARC
specifies services that are available from individual
agents. T-ARC also specifies "demands" that agents
have, which are resources that an agent wants to get
from other agents in the system. The agents (relation
agents in particular) maintain demand and service
lookup tables (DLT, SLT). The lookup tables are
registry that a relation maintains to facilitate service
and demand discovery by other agents. T-ARC
specifies the locations where the lookup tables are
placed. The service and demand cost metrics (SCM,
DCM) are relationship variables maintained by a
relation. The lookup tables and cost metrics are open
to be used by the designer to store any item (and not
just registry and costs) that is required to maintain a
relationship. The T-ARC thus offers a flexible toolset
to represent the idea as a design model.

 The lower layers of platform independent and
platform specific design in HTM5 trade view are a
cluster of classes (R: Relational view, S: Structural
view, T: Trade view, B: Behavioural view, XH:
Hyperactivity in view X) (see Fig. 6) encapsulated
together to form a component. The platform
independent component contains abstract classes [14]
which are later completed in the platform specific
layer. Unified markup language (UML) [15] is used
to specify HTM5 platform independent and platform
specific components.

Details about the structure and format of these lower
layers and that of HTM5 machine descriptor model (HTM5-
MDM) (see Fig. 3) are not essential for the current paper.

IV. AGENT DRIVEN PEER-TO-PEER CLOUD ROBOTICS

In introduction to this paper we have suggested the
benefits of peer-to-peer and agent driven approach to cloud
robotics. HTM5 is a general purpose model for multi agent
system development, and suited for service oriented systems.
In this section we present the idea of peer-to-peer cloud
robotics using HTM5’s modelling constructs.

A. System representation

A cloud robotic system with multiple parties is by
definition a geographically and computationally distributed
system. It is one of the prime requirements in a model to have
a structural representation that locates networks, agents and
hardware components. ARCs are computationally
independent representations of a system's structure and
relationships that exists between agents. Fig. 7 presents an
example of two ARCs [13] of a simple peer-to-peer cloud
robotic system. Agents, hardware, clouds and managerial
agents (merges and relations) are well specified in the model.
The names and locations of services and associated demands
are modeled in T-ARC along with functional descriptions of
merge and relational agents. Lookup tables and cost matrices
contains relationship variables used by the relation agents and
agents which are a part of the relationship. Fig. 7 is an
example of a well-defined closed system and hence it doesn’t

Figure. 7 ARCs for representing system structure, relations and
trade structure of a peer-to-peer robotic system.

Figure. 8 Trade ARC representing Service discovery and
Matchmaking mechanism with Lookup tables hosted on a Relation.

require a service discovery and matchmaking mechanisms. In
a real project, several ARCs may be drawn to form a
complete model of the system.

B. Discovery and matchmaking mechanism

We assume most cloud robotics systems will be dynamic
with agents having more than one options to get the required
services from and where members become online and offline
randomly. In such systems there will be a need to have a
registry system (like in many service oriented open systems)
to publish services and demands of agents. Fig. 8 is an
example of one such system where more than one service
provider publishes the availability and cost of its services
through a lookup table hosted on a relation agent. One
possibility for service initiation could be the matchmaking
mechanism implemented on the relation. In such scenario it is
necessary for the agents to grant authority to the relation
agent to decide on their behalf which service provider is
allotted to them and on what basis (The relation agent will
have to be hyperactive [12] to surpass autonomy of other

agents). The other possibility could be to allow agents to
negotiate the costs of the services. The relation agent in such
a case may store and maintain the registry, the trust and
quality of service variables of individual relatives.

Agents communicate the updated values (or read requests)
for the lookup table entries (e.g. Part-map IDs and
Offered/Asked Prices in Fig. 8) to relation agents, as and
when required. The relation agent adds/deletes records from
the lookup tables when agents become online/offline. Any
updates made in relationship variables are reflected in the
matchmaking mechanism (on the relation agent) or the
negotiation mechanisms (between pair of agents).

C. Relationships and contracts

Relationships are relative positioning of agents into a
predefined social construct. In scenarios where we have
relation agents dynamically adding or deleting agents to a
relationship (via a merge agent, discussed in part D of the
current section), the joining agents instantly know their role in
a relationship by the kind of relation agent they are attaching
to. As each agent has its personal goals and business logic, a
pre-defined trade relationships help reduce otherwise chaotic
system of agents.

Once agents decide to exchange the services (by
matchmaking mechanism or by agent to agent negotiations),
the relation agent or the agents themselves may bind
themselves to a contract. This is similar to current pay per use
cloud computing services available online, the service
provider and the user agree upon a cost and quality of service
before initiating the service. The quality of service between a
pair of agents is monitored by the relation agent. The denial
of service by a service provider, or a problem with the quality
of service after contract initiation is reported by the client
agent and is recorded by the relation agent. Counter Actions
could be initiated by the relation agent like termination of the
current contract, penalty and/or lowering of the trust
parameter for the service provider. Trust parameter of an
agent may affect the matchmaking/negotiations for its future
deals. Trust is a complex human factor to model, and its
implementation may vary from project to project.

In peer to peer (or client server based) cloud robotics, the
parties involved in the use of paid services will have to bind
themselves in a legal contract. Administrative and banking
agents as a part of the cloud computing system could be one
of the possible solutions. These measures will be essential in
popularizing cloud robotics as a business possibility as
relationships and contracts bring reliability and a level of trust
in the cloud robotic system.

D. Dynamic Electronic Institutions

The most advantageous step towards bringing peer-to-peer
cloud robotics closer to a viable business model, would be to
establish mechanism for automated dynamic electronic
institution [16] formation. An institution is a representation of
a norm based society. Social, business and administrative
institutions shape the way humans interact [17]. Electronic
institutions are a representation of a norm based multi agent
system leading to a sociologically-inspired computing [18].
The norms introduced by electronic institutions or dynamic
electronic institutions may be seen as a limiting factor in a
system’s functionality, but by constraining agent’s behaviour

they decrease the system complexity and make agent
behaviour more predictable.

For dynamic electronic institutions, one proposed
lifecycle is a three phase life cycle (3F life cycle) [19].
Formation, Foundation and Fulfillment are the three phases in
a digital institution’s lifecycle. Agents from an agent
community are selected to form a coalition (Formation Phase)
followed by establishment of norms of an institution. Once
the norms are finalized and a particular kind of institution is
chosen, the agents form and participate in the institution
(Foundation phase). Re-formation and re-foundation may
occur as and when required to keep an institution effective.
On completion of an institution’s mandate, the institution is
dissolved (Fulfillment phase). The 3F approach has one
application in agent based business ecosystem development
[19]. Cloud robotics is one such ecosystem, and an agent
based peer-to-peer approach towards cloud robotics requires
an institutional framework to find acceptance as a business
model. The digital electronic institution concept can be
implemented in HTM5 trade model by using merges for
managing formation, foundation and fulfillment phases, and
relational agents for re-formation, re-foundation and
managerial logic constructs.

V. CONCLUSION

 We have discussed the possibilities of extending the

current client server based cloud robotics to a peer-to-peer

structure. We believe a real-life cloud robotic system will be

a network of computers, web-servers, smart phones, ambient

intelligent devices and robots working together as one

system. The use of agents to represent robots and other

computational units and to treat cloud robotics as a multi

agent system ecosystem was the key motivation behind the

presented idea. The Agents we talked about could be any

entity in the cloud, i.e. any network enabled computational

device (Including Robots and Human Actors).

We introduced model based engineering and its growing

popularity in the design on complicated software systems

including distributed intelligent systems. Elements and

concepts behind the five view hyperactive transaction model

were discussed with special attention to the trade view. We

presented scenarios and mechanisms using HTM5’s trade

model by which the idea of agent driven peer-to-peer cloud

robotics may be actualized. Mechanisms of service discovery

and matchmaking, relationship and contract based trade and

dynamic digital institutions were discussed with respect to

peer-to-peer cloud robotics. We presented a computational

independent description of peer-to-peer cloud robotics and

suggested HTM5 trade model as one of the tools for its

development. No claims were made to present HTM5 as a

better or the only meta-model for implementation of the

presented ideas. HTM5 is an open and flexible meta-model

for multi-agent system development, and in our opinion has

necessary tools for cloud robotics ideas presented here.

ACKNOWLEDGMENT

The current research is being funded by the Laboratory

Le2i (CNRS 5158, Le-Creusot, FRANCE), Bourgogne

regional council (Regional French administration) and the

Universiti Technologi Petronas (Perak, Malaysia).

REFERENCES

[1] M. Wooldridge. “An Introduction to Multi-agent Systems”, Published

in February 2002 by John Wiley & Sons (Chichester, England), ISBN:
0 47149691X, 2002.

[2] M. Luck, P. McBurney and C. Preist. “Agent Technology: Enabling

Next Generation Computing”, In A Roadmap for Agent-Based

Computing, ISBN:0854327886, ver. 1.0. Southampton: AgentLink

2003.

[3] M. Luck, P. McBurne, O. Shehory and S. Willmott. “Agent
Technology: Computing as Interaction”, In A Roadmap for Agent

Based Computing, Compiled, written and edited by M. Luck, P.

McBurney, O. Shehory, S. Willmott and the AgentLink Community,
pp. 11-12, 2005.

[4] “Methodologies and Software Engineering for Agent Systems: The

Agent-Oriented Software Engineering Handbook.” Editors: Federico
Bergenti, Marie-Pierre Gleizes, Franco Zambonelli ISBN: 978-1-4020-

8057-9 (Print) 978-1-4020-8058-6 (Online)

[5] P. Stone and M. Veloso. “Multi-agent Systems: A Survey from a
Machine Learning Perspective”, In Autonomous Robots, vol. 8, no. 3,

pp. 345-383, July 2000.
[6] L. Panait and S. Luke. “Cooperative Multi-Agent Learning: The State

of the Art”, In Autonomous Agents and Multi-Agent Systems, Ed.

Springer-Verlag, vol.11, no. 3, pp. 387-434, 2005.
[7] G. Weiss. “Multi-agent Systems: A Modern Approach to Distributed

Artificial Intelligence”, Edited by Gerard Weiss. ISBN: 0-262-23203-

0, 1999.
[8] N. R. Jennings and S. Bussmann. “Agent-Based Control Sys-tems.

Why Are They Suited to Engineering Complex Sys-tems?”, In IEEE

Control Systems Magazine, vol. 23, no. 3, pp. 61-73, Jun. 2003.
[9] E. Seidewitz, “What models mean”, IEEE Softw., vol. 20, no. 5,

pp.26–32, 2003.

[10] “OMG, Model Driven Architecture Guide”, version v1.0.1, June,
2003. http://www.omg.org/docs/omg/03-06-01.pdf

[11] Diego ALONSO, Cristina VICENTE-CHICOTE, Francisco ORTIZ,

Juan PASTOR, Bárbara ÁLVAREZ "V3CMM: a 3-View Component
Meta-Model for Model-Driven Robotic Software Development,"

Journal of Software Engineering for Robotics (JOSER), January 2010,

3-17.
[12] Vineet Nagrath, Fabrice Meriaudeau, Aamir Saeed Malik, Olivier

Morel, “Introducing The Concept of Hyperactivity in Multi Agent

Systems,” IEEE-CSNT2013, April 2013.
[13] Vineet Nagrath, Fabrice Meriaudeau, Aamir Saeed Malik, Olivier

Morel, “Agent Relation Charts (ARCs) for Modeling Cloud based

transactions,” IEEE-CSNT2012, May 2012.
[14] http://en.wikipedia.org/wiki/Abstract_type

[15] “OMG, Unified Modeling Language (UML) Superstructure

specification v2.1.1”, formal/2007-02-05, Feb. 2007. Available:
http://www.omg.org/cgi-bin/apps/doc?formal/07-02-03.pdf

[16] M. Luck, P.McBurney, Chrs Preist, "Agent Technology: Enabling

Next generation Computing. A Roadmap for Agent Based
Computing", AgentLink II, January 2003.

[17] Douglass C. North, "Economics and Cognitive Science," Economic

History 9612002, Economics Working Paper Archive at WUSTL,
1996.

[18] D. Hales and B. Edmons, “Sociologically Inspired Engineering”. In

AgentLink News, Agent Research Overview, pp 11-13. September
2004.

[19] Eduard Muntaner-Perich, Josep Lluís de la Rosa Esteva, "Using

Dynamic Electronic Institutions to Enable Digital Business
Ecosystems", Coordination, Organizations, Institutions, and Norms in

Agent Systems II, Lecture Notes in Computer Science Volume 4386,

2007, pp 259-273

