
Science and Information Conference 2013
October 7-9, 2013 | London, UK

188 | P a g e
www.conference.thesai.org

HTM5-Trade Model for Relationship Based Trade

Modelling in Multi Agent Systems

Vineet Nagrath

Laboratoire Le2i,

UMR CNRS 5158, Le Creusot, FRANCE

Olivier Morel,

Laboratoire Le2i,

UMR CNRS 5158, Le Creusot, FRANCE

Aamir Saeed Malik

UTP, Perak, MALAYSIA

Department EE

M Naufal B M Saad

Department EE,

UTP, Perak, MALAYSIA

Fabrice Meriaudeau,

Laboratoire Le2i,

UMR CNRS 5158

Le Creusot, FRANCE

Abstract—Cloud computing and multi agent systems are two

different but correlated flavors of distributed computing. Cloud

computing is a business oriented model with efficient

infrastructural usage as the prime focus while the multi agent

system research is oriented towards the development of

intelligent applications on distributed infrastructure. The

commonality between the two appears when agents in a multi-

agent system trade services with other agents. In recent years,

model driven engineering is changing the way software is

developed for complex distributed systems. Multi-view models

are collection of models for a system under study, where every

model is called a ‘view’ of the system and captures a different

aspect of the design. Relationships are important aspects of

multi-agent system design as agents are evolved from the concept

of objects in object oriented modelling. The current work

proposes a model for relationship based modelling of service

oriented trade in a multi agent system. The proposed model may

also be used to model intelligent cloud computing services based

on multi-agent systems. The model is one of the 5 ‘views’ of a 5-

View Hyperactive Transaction Meta-Model HTM5 and thus
called HTM5-Trade Model.

Keywords—Cloud Computing; Model Driven Architecture;

Multi Agent Systems; Multi View Modelling; Software Engineering

I. INTRODUCTION

The concept of 'objects' in object oriented programming
came from the real world idea of objects. Modeling in object
oriented methodology includes not only specifying class
attributes and operations but also the relationships that exists
between different classes. There is no single definition of an
'agent' that can fully capture the different functionalities and
domains it is associated to. In general, an agent is an
autonomous entity in a system of computing entities which
interact with each other for completion of their personal and
corporative goals [1], [2] and [3].

Distributed Artificial intelligence or DAI [4] is the
distributed version of artificial intelligence and has two main

sub-divisions. Sub-division which focuses on the distribution
of the problem solving process is called Distributed Problem
Solving or DPS. The second sub-division studies the
interaction and behavioural complexities and is known as Multi
Agent Systems or MAS [5]. Multi Agent systems are systems
of computational entities in which every entity have specific
objectives and roles in an environment which may have other
computational entities with possibly different objectives and
roles [6]. A system of agents working together giving equal
weightage to personal and system goals reach a state of
intelligence by the combined effect of various simple
collaborations and competitions amongst its members [7].

USA's National Institute of Standards and Technology
gives the following definition of Cloud Computing: “Cloud
computing is a pay-per-use model for enabling available,
convenient, on-demand network access to a shared pool of
configurable computing resources that can be rapidly
provisioned and released with minimal management effort or
service provider interaction.” Given the exponential growth of
internet enabled devices and services, cloud computing takes
distributed computing to a whole new level. Today cloud
computing is used mainly for efficient usage of distributed
resources by enabling scalable use of high end resources from
multiple remote locations [8].

Cloud computing as a business model is becoming
increasingly useful for businesses as well as for individual
users. Multi agent systems could be one important constructs to
implement intelligent services on the cloud computing business
model. Cloud computing infrastructures are an ideal platform
for agents and the advancement in large scale multi agent
systems could lead to emergence of a whole new generation of
intelligent services on the cloud [9].

II. MODEL DRIVEN ENGINEERING FOR AGENTS

A collection of statements about a system being studied is
in definition, a model of the system [10]. The statements

Science and Information Conference 2013
October 7-9, 2013 | London, UK

189 | P a g e
www.conference.thesai.org

should collectively describe the workings of the system or they
could specify the behaviour of a system in different scenarios.
A model made to specify other models is called a meta-model
[10]. Meta model are statements about a model that
collectively describe the model. Model Driven Engineering or
MDE is an engineering approach where the designs are
developed without giving much importance to the
implementation details. Implementation details are thus pushed
as later in the project development cycle as possible giving a
more abstract and easy to modify design. As the designs made
in MDE are simple to understand, the non-technical
stakeholders can play a bigger part in the design process and
thus the end product is closer to what the client actually needs.
In recent years MDE is adopted by many industries including
the software industry. Robotics and multi agent systems that
use cloud computing are systems with high implementational
complexities and hardware dependence. MDE thus provides an
attractive opportunity to improve the software development life
cycle for robotic and multi agent systems.

Fig. 1. MDA adapted to Industrial Robotic Product Development

Object Management Group (OMG), a consortium for
computer industry in June 2003 made available its Model
Driven Architecture (MDA) Guide [11]. MDA has gained
popularity in industrial and research sphere, and is seen as the
next big development in the way software systems are
developed. OMG‟s MDA is a three layered model namely
Platform Specific (PSM), Platform Independent (PIM) and
Computation independent model (CIM). “Fig. 1” presents an
adaptation of MDA in the industrial robotic product
development [12].

For systems with greater complexities, more than one
model is used to specify the system. In such a design
methodology, the different models highlight different features
of the system under study and are called different „views‟ of
the system. Providing various models to various viewers of the
system improves readability of the design and this
methodology is known as multi-view modeling. An example of
this methodology is the 3-View Component Meta-Model
(V3CMM) [12] which is a multi-view meta-model used for
development of software components for robotic systems.

The three views namely structural, coordination and
algorithmic views separately contain the structural, event-
handling and algorithmic logic and provide abstract and well
classified statements on the system in study “Fig. 2”.

Fig. 2. A 3-View Component Meta-Model for robotic software development

III. CONCEPTS IN MULTI AGENT SYSTEMS

Multi Agent System transactions are similar to transactions
between human agents. Not surprisingly, the BDI agents [13]
are agents designed on the ideas of Beliefs, Desires and
intensions which are human concepts. Institutions [14], Ethics
[15] and Trust [16] are some other human concepts which
commonly appear in the study of sophisticated multi agent
system research.

As the multi agent systems become more humanoid, a
number of human concepts will find place in multi agent
systems. Beneath these complicated concepts, there are some
fundamental system features that enable these complicated
phenomenons to exist. Following are some of the key
parameters knowledge of which could sufficiently describe its
fundamental working logic.

 Structure and Location: System‟s structure and the
physical locations of different agents including details
of the hardware where they are hosted.

 Communication: Details of the network(s) that connect
different agents.

 Relations: „Named‟ relationships between two or more
agents with details of the roles related agents play in
these relationships.

 Services: Any kind of functionality that an agent
provides to other agents, which can be invoked and
used as a remote resource or information.

 Demands: The resources available as services in other
agent, which an agent needs to use in order to complete
personal or system tasks assigned to it.

 Economy: Any mechanism that enables the trade of
services in a multi agent system (a currency like
mechanism enabling exchange of resources as services).

 History: Capability of an agent to remember personal or
system variables over an extended period of time.

 Learning: A mechanism which can induce a change in
the behaviour of an agent based on the history of
events.

Science and Information Conference 2013
October 7-9, 2013 | London, UK

190 | P a g e
www.conference.thesai.org

 Behavioural Scenarios: A documentation of expected
behaviour of multi agent system in some perceivable
event scenarios.

Many of the above parameters exist with little variation in
the cloud computing business model. Structure, Location and
communication details are mostly hidden to the users in cloud
computing but Services oriented economy is the fundamental
component of cloud computing. Trade logic in cloud
computing provides Platform, Software, Infrastructure as a
service (PaaS, SaaS and IaaS) [17] which is not much different
than the services that software Agents offer to one another in a
Multi Agent System. As against the straightforward pay per
use approach and list based service discovery in current cloud
computing services, a multi agent based cloud computing
service will bring a greater level of intelligence in the system.
Likewise, availability of Cloud computing infrastructure to
multi agent systems would generate a new generation of large-
scale multi agent systems.

IV. AN OVERVIEW OF THE 5-VIEW HYPERACTIVE

TRANSACTION META-MODEL (HTM5)

5-View Hyperactive Transaction Meta-Model (HTM5) is
an OMG‟s MDA based 3-layer meta-model for designing
Multi-Agent Systems. The three layers of HTM5 are in
agreement with the three layers of MDA and are named
accordingly “Fig. 3”. Being a multi-view model, HTM5 has 5
models (views) for representing different design aspects of the
multi-agent system under study. The five views of HTM5 are
as follows:

 Structural Model/View: Contains information about
Multi-Agent System‟s overall structure, physical
locations and details of the hardware on which each
agent is hosted. This view also shows various kinds of
networks that join different hardware, and thus the
agents that are hosted on that hardware.

 Relational Model/View: This model informs about the
relationships that exists between different agents. The

relationships are „named‟ and they give information
about the roles different related agents play in the
relationship.

 Trade Model/View: This model contains the trade logic
on the multi-agent system. The availability of services,
the associated demands and the economic variables are
specified in this model. As relations play a major role in
multi-agent system trade, this is essentially a
relationship based trade specification model.

 Hyperactivity Model/View: Hyperactivity is the ability
of an agent to transmit its knowledge to its associated
agents [18]. Hyperactivity mechanism is not just the
transfer of information between agents but a whole
mechanism by which agents learn from their event
history, and then use the activity/hyperactivity
mechanism to modify their own behavior (activity) or
the behaviour of an associated agent (hyperactivity).

HTM5 components are passive, active or hyperactive.

 Behavioural Model/View: A model to capture multi-
agent system‟s behaviour in various event driven usage
scenarios.

HTM5‟s 5 views capture the 9 multi-agent system concept
parameters discussed in section III. In addition to the 5 main
views of HTM5 model, there is a machine descriptor
view/model (MDM) for specifying the hardware on which
various agents are hosted “Fig. 3”. The hyperactivity view
further contains sub views representing the 4 different kinds of
hyperactivity present in the system under study. In all 5 main
views of HTM5, the Computation Independent Layer contains
an Agent Relation Chart (ARC) [19] that specifies the view
specific design.

There are 5 different ARCs in for different views on HTM5
and they represent an abstract view design specification for
structural, relational, trade, hyperactivity, and behavioural
elements of the multi-agent system under study.

Fig. 3. The 3 Layers and various Views of the 5-View Hyperactive Transaction Meta-Model

Science and Information Conference 2013
October 7-9, 2013 | London, UK

191 | P a g e
www.conference.thesai.org

For the lower layers, Platform Independent and Platform
Specific Components specify the functionalities associated to a
particular view (or sub-view). In general, any component in
HTM5 based multi-agent system is an agent. Along with
regular agents, there are agent-components which are given
special name (and symbol in ARCs) because of their specific
functionality. "Merge-agents" or "Merges" are agent-
components responsible for multiplexing/demultiplexing type
operations in the multi-agent system. "Relationship agents" or
"Relations" are agent-components which help maintain
relationships amongst other agents. The Machine Descriptor
Model (HTM5-MDM) introduces the concept of internal and
external names for hardware specific parameters. With the
change of host hardware, only minor changes in the Machine
Descriptor Model are enough to reuse the HTM5 based design.
Inclusion of HTM5-MDM greatly increases the number of
hardware platforms where a component can be reused without
modification.

HTM5 is a multi-view model and thus each of its views can
be studies independently. In the current work, we are
presenting the agent relationship based HTM5-Trade Model.

V. HTM5-TRADE MODEL

HTM5 Trade model is one of the 5 views of HTM5.
Although these views represent different aspects of the multi-
agent system and can be studied independently, there is still a
number of correlating parameters which connect them. For
example, the Trade „relations‟ and location dependent „costs‟
cannot be specified without first knowing the structural and
relational details (HTM5 Structural and Behavioural views) of
multi-agent system, and the Trade „behaviour‟ cannot be fully
specified without referring to the behavioural Model (HTM5
Behavioural view). When studying an individual view of
HTM5, it is to be assumed that other views are also available
for reference.

Each of the HTM5 views has elements in all three layers of
the model “Fig. 3”. We now present the Trade view elements
for each of the three layers.

A. Computation Independent Layer

In HTM5, Computation Independent trade design is
specified using Trade-View Agent Relation Charts (T-ARC).
Following are some of the HTM5 and ARC [19] elements
“Fig. 4” which will be required for Behavioural Trade
modelling at Computation Independent Layer:

 HTM5 Component: HTM5 is a component based
architecture where every agent is modeled as one
independent component. Agent components with
specific jobs are further specified as "merge agent
components" and "relational agent components". These
components could be passive, active or hyperactive
"Fig. 4" based on whether they have learning
capabilities and the capability to transfer what they
learned to other components [18].

 Agent Component: An HTM5 agent component is a
representative of the base software in the multi-agent
system. The agent and the base software are both
running on a hardware host, and the agent is connected

to other agents in the system via one or more network
clouds. HTM5 agent component has a control unit
which is governed by a fixed number of control
parameters. Presence of an update mechanism for
control parameters makes an agent "active" and a
hyperactivity mechanism qualifies them as a
"hyperactive" agent [18].

Fig. 4. HTM5 Trade and Behavioural View Elements

 Merge Component: HTM5 merge agent components
are agent components which are modeled for the
specific operation of multiplexing/demultiplexing
information from one root channel to a number of
similar components. Like any other agent component,
"Merge" could be passive, active or hyperactive in
design.

 Relational Component: HTM5 manages agent
relationships using special agent components called
"Relation". These agent components are responsible
for maintaining relationship amongst other agents and
they store and manage the parameters that define a
relationship. Like "Merges" and "Agents", HTM5
"Relations" could also be passive, active or
hyperactive.

 Co-Hosted Components: In case more than one HTM5
components are hosted on the same hardware, they are
grouped together in ARC diagrams as co-hosted
components. They are used to include the physical
location of components in the design model.

 Cloud: A "cloud" in HTM5 is any kind of network that
enables communication between components. To
identify the location of a specific network, and to know
which of the components are connected using a
particular network, the "clouds" are uniquely
numbered in the ARCs [19].

 Service: Cloud computing is a service oriented
business model which enables resources to be traded as

Science and Information Conference 2013
October 7-9, 2013 | London, UK

192 | P a g e
www.conference.thesai.org

Fig. 5. Platform Independent and Platform Specific Component
Models in HTM5

a service (XaaS, where X could be Infrastructure,
Platform, Software, Strategy, Collaboration, Business
Process, Database, Network or Communication [20]).
In HTM5 Trade model, a service could be any of the
above resources that an HTM5 component makes
available to be used by other agent components.

 Demand: Any resource required by any HTM5
component is a demand by that agent component. An
HTM5 component may invoke one of the other HTM5
components which are offering that resource as a
service.

 Lookup Tables: A "Service" or a "Demand" made by a
HTM5 component has to be listed at a location for
other HTM5 components to see. Ideally "Relation"
components may store Lookup tables for Demands and
Services available in a relationship (Demand Lookup
Table: DLT and Service Lookup Table: SLT "Fig. 4").
These tables may also be used for enlisting other items
that are essential for sustaining a relationship and they
may be stored at any HTM5 components other than the
"Relation" components.

 Cost Metrics: Once a "Service" or "Demand" is
identified by a HTM5 component, the cost metrics
enables the component to make trade related decisions
by giving costs associated with a particular "Service"
or "Demand". These "costs" could be any variables
that specifies the location, distance, quality, reliability
of the service (or demand), and this information
enables a HTM5 component to make a wise decision
on whether to take an offered "Service" (or to offer a
service to a particular "Demand"). The Demand and
Service Cost Matrices (DCM and SCM in "Fig. 4")
could ideally be stored at "Relation" components (or
any other HTM5 component as per the designer's
conviction) and they may also contain any other
information that is required for a trade relationship.

The elements mentioned above are used to create Trade-
ARCs which are an abstract representation of the service
oriented trade logic of the multi-agent system under study. A
step by step usage example of the model is presented in
“Section VI” of the paper.

B. HTM5 Platform Independent and Platform Specific

Component Design

As in OMG‟s MDA guide, the second layer of HTM5 is a
Platform Independent Model “Fig. 3” for components which
were introduced in the Computation Independent layer. The
elements of HTM5 components are object oriented in nature
and they are specified using elements of Unified Markup
Language (UML) [21]. “Fig. 5” shows the elements of a
HTM5 component. A HTM5 component is subdivided into two
component models, one for Platform Independent elements and
the other one for Platform Specific elements. For each of the
views (and Hyperactivity sub-views) there is a corresponding
class in Platform Independent Component (e.g. PIC_T is a
class for trade view “Fig. 5”). Classes of Platform independent
Component are abstract classes as the platform specific data
and functional elements are abstract [22]. In Platform Specific

Component, the classes for individual view override the
abstract classes of the platform Independent Component (e.g.
PSC_T extends/inherits PIC_T class and overrides the abstract
elements of PSC_T class “Fig. 5”). Objects of the Platform
Specific Classes thus contain Platform Independent
components from the abstract classes and the overridden
Platform Specific Components from the Platform Specific
Classes.

Other elements of the HTM5 component are UML based
Use-Case and sequence diagrams for modeling behaviour
within individual classes (Intra-Class) and in between different
classes (Inter-Class). Global data and methods and algorithmic
definition for class methods are also a part of the HTM5
component. For Behavioural Trade modeling, the Trade view
specific classes are modeled. When each of the 5 views model
their individual classes, the inter class diagrams are modeled
giving a complete model for the HTM5 component. The idea
behind having separate views, and separate classes for views is
to maintain modularity in both design and implementation
level and improves reusability of components. “Section VI”

Science and Information Conference 2013
October 7-9, 2013 | London, UK

193 | P a g e
www.conference.thesai.org

Fig. 6. ARC for Sandbox multi agent system

gives a detailed usage example for the Trade View component
modeling in HTM5.

VI. A HTM5-TRADE MODELLING EXAMPLE

A. Sandbox: Computation Independent Model

The first step in modelling of any multi-agent system is to
identify the system components. We start by taking a
hypothetical multi-agent system named “Sandbox” which has 5
identifiable hardware units as follows:

 Robots: 2 ground robots capable of making a
3Dimensional map of their surroundings.

 Computers: One laptop onsite capable of
communicating with the two robots via an infrared
communication link and a remote desktop computer
connected to the internet.

 Web Server: One web server connected to the two
computers via internet.

We now design a system with 7 agents running on the
above mentioned hardware units. In a real project, the design
team will brainstorm on the structure and relational elements of

the system to create an Agent Relation Chart [19] for the
system like the one shown in ”Fig. 6”. The ARC specifies the
following design elements of the “Sandbox” multi-agent
system (MAS):

 The Sandbox MAS has one “Merge”, two “Relation”
and 5 agent components. In total there are 7 HTM5
components.

 “Team” and “Map Builder” components are co-hosted
on “Laptop” while “Manager” and “Object Locator”
are co-hosted on the “Web Server”.

 The two “Robots” and “Map Builder” are in a “Team”
relationship with “Map Builder” as the team leader
(Assuming “Team” relationship defines port 1 as the
port for team leader).

 “Master” manages the “Object Locator” component as
they are related by the “Manager” relation with port 1
assigned to “Master”.

 The two network clouds in the MAS are named as “1”
and “2” where “1” stands for internet and “2” stands
for an infrared communication link.

The next step in the modelling process is to identify
different services, demands and relational trade elements. Once
identified, these elements of the relational trade logic can be
modeled onto the Trade-Agent Relation Chart [19] like the one
shown in “Fig. 7”.

Fig. 7. Trade-ARC for Sandbox multi agent system

Fig. 8. Trade-ARC for scenario with Lookup Tables

The Trade-ARC in “Fig. 7” contains the following
relational trade information about the “Sandbox” MAS:

 The two “Robots” provide the 3D maps that they build
as a service. These partial maps are a demand at “Map
Builder” component.

 The “Map Builder” component provides the complete
3D map as a service to the “Object Locator”
component.

 The “Object Locator” component demands the
information about the objects which are to be found in
the map, these objects are provided by the “Master”
component as a service.

 “Master” component demands the locations of the
found objects, which is a service provided by “Object
Locator”.

 There are 2 look-up tables in the “Team” relation. The
lookup table helps maintain the team structure by

Science and Information Conference 2013
October 7-9, 2013 | London, UK

194 | P a g e
www.conference.thesai.org

providing the team leader (“Map Builder”) information
that it can use to take team-managerial decisions.

 The “Manage” relation contains a cost metric to track
the status of individual search objects.

 It is to be noticed that the lookup tables and the cost
metrics in the “Sandbox” multi-agent system are not used for
economic logic implementation. Here they are relationship
variables which are essential for maintaining that particular
relationship. In another scenario, imagine that the “Robots” are
not working for free in the “Team” and they are independent
workers offering parts of the map to the “Map Builder” at an
asking price (which may be different for different robots).
Likewise there may be more than one “Map Builders” and they
all offer different prices for different parts of the 3D maps
(depending on their business logic). In such scenario, there will
be a service lookup table in the “Team” relationship that
enables “robots” to publish the parts of map that they have with
their asking prices. There will also be a demand lookup table to
enable different “Map Builders” to showcase the parts of map
they need along with their offered prices. “Fig. 8” shows the
section of T-ARC in the above mentioned scenario.

B. Sandbox: Platform Independent Model

Once we reach the platform independent component design
phase of the modelling process, a design team may go in
different directions to implement the computation independent
model. We here present one of many ways in which HTM5
methodology can be implemented. The process explained in
this section is for the HTM5 component “Robot1”. The same
procedure is to be followed for each of the 7 components of the
“Sandbox” multi-agent system. In “Fig. 9” the main class for
the “Robot1” component is named as “Sandbox_PIC_Robot1”.
Within the class, there are objects being defined belonging to
the 5 PSC classes (See “Fig. 5 for HTM5 PIC and PSC
component structure”). The 5 PSC classes have to be defined
separately, and are reusable for another component as classes
are reusable templates. We now explain how these 5 classes are
modeled by taking an example for the Trade-View class
“Sandbox_PSC_Robot1_T”.

We can see in “Fig. 9” that the “Sandbox_PSC_Robot1_T”
class extends the “Sandbox_PIC_Robot1_T” class. The
“Sandbox_PIC_Robot1_T” class is an abstract class because
the “Get_System_Time ()” is an abstract function. This
function is just declared but not defined in the
“Sandbox_PIC_Robot1_T” class. Abstract classes are thus
incomplete classes and cannot be used to make objects. In
essence, all platform specific functionalities (related to Trade)
are to be kept in abstract functions while other functionalities
and data items are declared as well as defined in the PIC trade
class itself.

C. Sandbox: Platform Specific Model

Once the abstract PIC classes are modeled, the third layer
of the HTM5 model is used to define the Platform specific
components of the HTM5 component. For different platforms,
a different PSC model is made. This enables the top two layers
(Computation Independent and platform independent layers) to
remain unchanged and reused for different platforms.

The platform specific classes extend the platform
independent classes and then override the abstract functions. In
“Fig. 9”, the abstract function “Get_System_Time ()” is
overridden, and thus the incomplete elements of the platform
independent classes are completed in the platform specific
classes. As the PSC classes are not abstract classes, they can be
used to make objects. The “Robot1” component class defines
the object for the “Sandbox_PSC_Robot1_T” class. The
reusability aspect of using classes for individual views within
the components can be exemplified by a scenario where the
PSC class made for “Robot1” is reused in “Robot2” just by
defining an object of “Sandbox_PSC_Robot1_T” class in
“Robot2”.

D. Sandbox: Hardware Independence

The layers of HTM5 based on OMG‟s MDA enables the
use of different platform specific models without modifying
the computation independent and platform independent layers.
The change in hardware on which a platform is running
however may require a change in the PIC and PSC classes of
HTM5. To avoid this situation, the HTM5 Machine Descriptor
Model is included in the HTM5 methodology (“See Fig. 3 for
complete set of HTM5 views”).

Fig. 9. PIC and PSC Trade View classes for Robot1 Component

HTM5-MDM is parallel to the PIM and PSM layers of the
HTM5 model (“Fig. 10”). Both PIC and PSC classes of HTM5
uses the internal names (defined in MDM for the hardware) to

Science and Information Conference 2013
October 7-9, 2013 | London, UK

195 | P a g e
www.conference.thesai.org

access hardware functionality and variables. These internal
names remain unchanged with the change of hardware and thus
the PIC and PSC classes can be used as it is when the hardware
is changed. An Internal to external name mapping and
adjustment section in MDM enables the internal names to
retain their meaning when hardware is changed (“Fig. 10”).

Fig. 10. HTM5 Machine Descriptor Model

E. Steps for HTM5 Relational Trade Modeling

Based on the example explained in the current “Section
VI”, following are the steps for using HTM5 for Relational
Trade modelling:

 System Identification and creation of Agent Relation
Chart (ARC).

 Trade modelling based on relations and creation of
Trade-ARC.

 Creation of Platform Independent Abstract classes for
the Trade view (and other views).

 Extending the Platform Independent classes to create
Platform Specific classes.

 Creation of HTM5 Component classes by making
objects of PSC classes.

 Creation of Algorithmic documentation and Use-Case
Diagrams for each of the HTM5 components.

 Defining HTM5 Machine Descriptor Model if
required.

VII. CONCLUSION

Model driven architecture is an excellent software
engineering methodology for designing software for complex
distributed systems. Multi agent systems based on cloud
computing business model will give rise to a new generation of
cloud enables intelligent services. To model such systems, the
multi view modelling methodologies like HTM5 will provide a
complete toolset based on industrially accepted practices like
component based software engineering and UML. For agent
relationship based trade modelling, the HTM5-Trade model
provides a multi layered, component based methodology.

The current work presented the key elements of the trade
model along with a simple but comprehensive example. The
example presented scenarios where the HTM5 Trade model
can be used for designing cloud computing based trade logic as
well as the relationship based exchange of services.

VIII. ACKNOWLEDGMENT

The current research is being funded by the Laboratory
Le2i (CNRS 5158, Le-Creusot, FRANCE), Bourgogne
regional council (Regional French administration) and the
Universiti Technologi Petronas (Perak, Malaysia).

References

[1] M. Wooldridge. “An Introduction to Multi-agent Systems”, Published in

February 2002 by John Wiley & Sons (Chichester, England), ISBN: 0
47149691X, 2002.

[2] M. Luck, P. McBurney and C. Preist. “Agent Technology: Enabling

Next Generation Computing”, In A Roadmap for Agent-Based
Computing, ISBN: 0854327886, ver. 1.0. Southampton: AgentLink

2003.

[3] M. Luck, P. McBurne, O. Shehory and S. Willmott. “Agent Technology:
Computing as Interaction”, In A Roadmap for Agent Based Computing,

Compiled, written and edited by M. Luck, P. McBurney, O. Shehory, S.
Willmott and the AgentLink Community, pp. 11-12, 2005.

[4] P. Stone and M. Veloso. “Multi-agent Systems: A Survey from a

Machine Learning Perspective”, In Autonomous Robots, vol. 8, no. 3,
pp. 345-383, July 2000.

[5] L. Panait and S. Luke. “Cooperative Multi-Agent Learning: The State of

the Art”, In Autonomous Agents and Multi-Agent Systems, Ed.
Springer-Verlag, vol. 11, no. 3, pp. 387-434, 2005.

[6] N. R. Jennings and S. Bussmann. “Agent-Based Control Sys-tems. Why

Are They Suited to Engineering Complex Sys-tems?”, In IEEE Control
Systems Magazine, vol. 23, no. 3, pp. 61-73, Jun. 2003.

[7] G. Weiss. “Multi-agent Systems: A Modern Approach to Distributed
Artificial Intelligence”, Edited by Gerard Weiss. ISBN: 0-262-23203-0,

1999.

[8] M. Armbrust, et al., “A view of cloud computing,” Communications of
the ACM, vol. 53, no. 4, pp. 50-58, April 2010.

[9] Domenico Talia “Cloud Computing and Software Agents: Towards

Cloud Intelligent Services”, in proc. Of CEUR-WS, Vol.741, pp-2-6,
2011.

[10] E. Seidewitz, “What models mean”, IEEE Softw., vol. 20, no. 5, pp.26–

32, 2003.

[11] OMG, Model Driven Architecture Guide, version v1.0.1, June, 2003.
http://www.omg.org/docs/omg/03-06-01.pdf

[12] Diego ALONSO, Cristina VICENTE-CHICOTE, Francisco ORTIZ,

Juan PASTOR, Bárbara ÁLVAREZ "V3CMM: a 3-View Component
Meta-Model for Model-Driven Robotic Software Development," Journal

of Software Engineering for Robotics (JOSER), January 2010, 3-17.

[13] D. Kinny, M. Georgeff, A. Rao: “A Methodology and Modelling

Technique for Systems of BDI-Agents” in: W. van der Velde, J. Perram
(eds.): Agents Breaking Away. Proc. MAAMAW‟96, LNAI 1038,

Springer, Berlin, etc., 1996.

[14] M. Luck, P. McBurney, Chrs Preist, “Agent Technology: Ena-bling
Next generation Computing. A Roadmap for Agent Based Computing”,

AgentLink II, January 2003.

[15] Singh, M. An Ontology for Commitments in Multiagent Sys-tems:
Toward a Uni-fication of Normative Concepts. Artificial Intelligence

and Law v. 7 (1) (1999) 97-113.

[16] Sarvapali D. Ramchurn, Dong Huynh, and Nicholas R. Jen-nings. Trust
in multi-agent systems. Knowl. Eng. Rev., 19(1):1–25, 2004.

[17] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,

Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia, “Above the Clouds: A Berkeley

View of Cloud Computing,” UC Berkeley Reliable Adaptive Distributed
Systems Laboratory, February 10, 2009.

Science and Information Conference 2013
October 7-9, 2013 | London, UK

196 | P a g e
www.conference.thesai.org

[18] Vineet Nagrath, Fabrice Meriaudeau, Aamir Saeed Malik, Olivier

Morel, “Introducing The Concept of Hyperactivity in Multi Agent
Systems,” IEEE-CSNT2013, April 2013.

[19] Vineet Nagrath, Fabrice Meriaudeau, Aamir Saeed Malik, Olivier
Morel, “Agent Relation Charts (ARCs) for Modeling Cloud based

transactions,” IEEE-CSNT2012, May 2012.

[20] "ITU-T Newslog - Cloud computing and standardization: Technical
reports published". International Telecommunication Union (ITU).

Retrieved 16 December 2012. Link: http://www.itu.int/ITU-

T/newslog/Cloud+Computing+And+Standardization+Technical+Report
s+Published.aspx

[21] OMG, Unified Modeling Language (UML) Superstructure specification
v2.1.1, formal/2007-02-05, Feb. 2007. Available:

http://www.omg.org/cgi-bin/apps/doc?formal/07-02-03.pdf

[22] http://en.wikipedia.org/wiki/Abstract_type

