
  

 

Abstract— Video games have long been part of the 

entertainment industry. Nonetheless, it is not well known how 

video games can affect us with the advancement of 3D 

technology. The purpose of this study is to investigate the EEG 

signals regularity when playing video games in 2D and 3D 

modes. A total of 29 healthy subjects (24 male, 5 female) with 

mean age of 21.79 (1.63) years participated. Subjects were 

asked to play a car racing video game in three different modes 

(2D, 3D passive and 3D active). In 3D passive mode, subjects 

needed to wear a passive polarized glasses (cinema type) while 

for 3D active, an active shutter glasses was used. Scalp EEG 

data was recorded during game play using 19-channel EEG 

machine and linked ear was used as reference. After data were 

pre-processed, the signal irregularity for all conditions was 

computed. Two parameters were used to measure signal 

complexity for time series data: i) Hjorth-Complexity and ii) 

Composite Permutation Entropy Index (CPEI). Based on these 

two parameters, our results showed that the complexity level 

increased from eyes closed to eyes open condition; and further 

increased in the case of 3D as compared to 2D game play.  

I. INTRODUCTION 

The new wave of 3D technology coming in since the 
debut of Avatar in 2009 [1], has certainly raised great interest 
to invest on 3DTVs, just to be able to experience 3D vision at 
home. Among the two popular types of 3D viewing 
technology are 3D passive glasses and 3D active glasses. 

Basically, in order to perceive depth, each eye needs to 
see slightly different information. Based on this theory, the 
two technologies mainly differ in how each 3D glasses 
works. The 3D passive uses polarized glasses (cinema type), 
which is inexpensive and lightweight. In this technology, as 
the polarized images (i.e. horizontally and vertically) are 
projected simultaneously on the screen, the polarized 3D 
glasses block different kinds of light hence create the depth 
illusion in each eye. As a result, the image resolution is 
somehow compromised since technically, each lens blocks 
the incoming light thus viewer might not be able to get a full 
resolution of the image. 

On the other hand, the active shutter glasses used in 3D 
active technology alternately dim the right and left lenses at a 
very high speed. This means that only one eye can see at a 
time as the other eye is blocked when the shutter is closed 
(opaque). True to its name, this type of 3D actively 
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synchronizes with the TV screen in order for the ‘seeing eye’ 
to see the intended image. In comparison to the passive 
polarized 3D glasses, 3D active shutter glasses are generally 
more expensive since they depend on batteries to run. Despite 
the cost, this technology gives full high definition to each eye 
and wide range of viewing angles. 

The development of 3D definitely has given huge impact 
in game industry as most gamers tend to demand more 
immersion and get real experience with the game they play. 
Starting 2006, game developers had finally come up with the 
stereoscopic 3D gaming solutions that had a relatively low 
cost and high quality, such as Konami’s Tobidacid Solid Eye, 
Vuzix iWear, and Nvidia 3D vision. Later in 2010, Sony 
began to aggressively market 3D technology through their 
TVs, cameras, and their popular video game console, the 
PlayStation 3 which has gained popularity worldwide [2].  

To date, the effects of playing video games in 3D are not 
well established. Nonetheless, previous studies had shown 
that many non-gamers lose focus while playing 3D video 
games, and that they are more distracted or that they do not 
observe important details [3]. The increase in distraction 
among non-gamers may be explained by the results of a 
recent study which found that in 3D video, an increase in 
dimensions produced a wider array of visual objects and an 
increase in eye movements directed to those objects [4]. In 
another game research, it was found that during a game play, 
the increase of heart rate was also accompany with brain 
activation, and it was relatively high compared to rest 
condition [5-6].  

As human brain is complex and is able to perform 
multiple cognitive tasks at a time, non-linear time series 
analyses may help to reveal the underlying mechanism while 
performing these tasks. Currently, many EEG studies have 
worked in this area involving healthy subjects at rest [7] or 
performing cognitive tasks such as game play [8], patients 
with epilepsy [9-10] and Alzheimer disease [11] as well as in 
sleep [12] and anaesthetical studies [13-14].  

However, EEG studies on 3D games using time series 
analysis has not been reported. Many have found that the 
time series analysis is capable to indicate the dynamical 
changes in EEG signal. In this study, we employed two 
regularity measures, namely Hjorth Complexity parameter 
and Composite Permutation Entropy Index (CPEI) to 
investigate the EEG activity when playing video games in 2D 
and 3D modes. For this work, these two methods were 
selected mainly because both take advantages of low 
computational cost compared to conventional frequency 
analysis while providing results that can be easily to interpret 
(in correlation with physiological conditions). 
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II. METHODOLOGY 

A. Subjects 

29 subjects (24 male, 5 female), aged between 19 – 25 
participated in the study but three subjects (2 male, 1 female; 
age mean 22.33 ± 2.31 years) were excluded due to data 
corruption. Therefore, sample size was reduced to 26 subjects 
(22 males, 4 females; mean age 21.73 ± 1.59). All subjects 
have no unknown cognitive impairments and have normal or 
corrected-to-normal vision. Also, before participating in the 
study, they were briefed about the experimental procedure 
and upon agreement, all gave their written consent. In the 
past, none of the subjects had ever played the video game 
used in this experiment either in 2D, 3D active or 3D passive 
mode.  

B. EEG Recording  

The EEG data were recorded from 19 scalp locations 
(Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, 
T5, T6, Fz, Cz and Oz channels) based on the international 
10-20 system  where ear-linked was used as reference. The 
sampling rate was 256 Hz. The experiment began with a five 
minutes of eye-closed, five minutes of eyes open and 
followed by 20 minutes of video game play in 2D, 3D 
passive and 3D active modes, sequentially.  

For 3D experiments, two 3DTVs were in use: i) LG 42-
inch TV with passive polarized glasses (3D Passive) and ii) 
Sony 40-inch TV with active shutter glasses (3D active). 
Subjects were seated about 2.0 meters away from the screen. 
Each subject needed to complete five game levels within the 
time frame. At the end of each session, they were given a 
simulator sickness questionnaire (SSQ) regarding their 
general experience when playing game in the respective 
mode.   

As we aimed to investigate the effect of 3D game play on 
brain responses, the following measures were taken into 
consideration to minimize the exposure effect when playing 
game for the first time and playing them in 3D modes (active 
and passive): 

 Participants played the game prior to the experiment.  

 Only the middle three levels out of five were 
considered for analysis. The first and the last level 
were excluded due to excitation and fatigue effects, 
respectively. 

 Half of the subjects played game in 3D active first, 
followed by 3D passive while half played the game 
firstly in 3D passive then in 3D active. This was to 
randomize the order as well as to reduce the order 
effect of having to play the game in both 3D modes 
sequentially. 

After data collection, Neuroguide software was used for 
data cleaning. Artifacts like eye blinking, eye movement, and 
muscle movement were removed from the data prior to time 
series analysis. 

C. Hjorth Parameters  

Hjorth parameters are based on statistical calculations 
which used to describe the characteristics of EEG signal in 
time domain. The three Hjorth parameters which alternatively 

known as normalized slope descriptors (NSDs) include 
activity, mobility and complexity [15].  

The activity parameter, which is the variance   
  of the 

signal amplitude where    is the standard deviation of the 
EEG for a given epoch is the mean power of the EEG signal 
which represents the signal activity (1). While mobility is the 
estimate of the mean frequency, defined as the square root of 
the ratio of the activity of the first derivative of the signal 

  
   to the activity of the original signal   

  (2). The 
complexity parameter corresponds to the change in frequency 
is defined by the ratio of mobility of the first derivative of the 
signal to the mobility of the signal itself (3).  

The parameters can be computed based on the following 
derivations [15-16]: 

            
 ,  (1) 

         √
   

 

  
   

   

  
,  (2) 

            
         

       
   (3) 

 

D. Composite Permutation Entropy Index (CPEI)  

Composite Permutation Entropy Index (CPEI) describes 
the complexity of any non-linear time series, in this case the 
EEG signals. In this work, the computational steps were as 
proposed by [14].  

Firstly, for a given continuous EEG data, the signal was 
fragmented into a sequence of motifs. Next, each motif was 
classified as one of the six possible types, according to the 
shapes of the waves either ‘slopes’, ‘peaks’ or ‘troughs’. 
Then, the probability of motifs to appear in each type was 
calculated. Sequentially, the permutation entropy (PE) for the 
resultant normalized probability distribution of the motifs 
was computed based on Shannon uncertainty formula, as in 

     
∑          

                     
.       (4) 

Finally, the CPEI was computed using two additional 
parameters of permutation entropy, noise threshold tie, and 
lag τ, which may be equal to 1 or 2. The formula for CPEI 
used in this work is as shown in (5). This formula combined 
the PE of different lags (τ =1 and τ =2), to distinguish periods 
of delta waves and to differentiate mid-frequency waves from 
very slow delta oscillation respectively. This composite index 
is based on the summation of entropies and the components 
of two PEs. The six motifs for each PEτ and one for  PEties, 
hence a total of 49 (7×7) was used to normalize the 
denominator. 

       
∑                        ∑                      

       
 (5) 

 To reduce the computation for all 19 electrodes, the 
electrodes were grouped accordingly into five brain regions 
such as frontal (Fp1, Fp2, F3, F4, F7, F8 and Fz); central (C3, 
C4 and Cz); temporal (T3, T4, T5 and T6), parietal (P3, P4 
and Pz) and occipital (O1 and O2). 
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III. RESULTS 

The Hjorth and CPEI parameters were computed for all 
five conditions: i) Eyes Closed (EC) ii) Eyes Open (EO) iii) 
2D Game play iv) 3D Passive Game play and v) 3D Active 
Game play. However, in this work we considered the third 
Hjorth parameter, (i.e. complexity) as the results using the 
first two parameters were very not significant. The mean 
values for Hjorth complexity parameter and CPEI are plotted 
with respect to conditions, are shown in Figure 1 and Figure 
2, respectively. 

The complexity measure is higher for sudden and 
frequent changes in the signal over time. In Figure 1, the 
initial rest condition (EC) had the lowest complexity for all 
brain regions and rapidly increased during eyes open 
condition. Similarly, the complexity level was further 
increased with the presence of visual stimuli from eyes open 
to 2D game play and 3D game play. Overall, the complexity 
in 3D Active was the highest with the exception for frontal 
region.  

 

Figure 1.   Hjorth complexity with respect to subjects' condition 

 

 
Figure 2.  CPEI with respect to subjects' condition 

We also applied the CPEI method as a measure of signal 
complexity on the same 2D-3D game play data. In Figure 2, 
the resulting index lies between 0.75 to 0.80, while the 

maximal entropy is when the CPEI value equals to 1. 
Interestingly, the CPEI result also showed similar trend 
where at rest conditions (both EC and EO), the index was 
lower compared to the game play conditions (i.e., 2D or 3D). 
Although the difference between 3D Active and 3D Passive 
was comparable; overall, the index was slightly higher for 3D 
game play in comparison with 2D. 

To further test the significance of the difference between 
two conditions (i.e., 3D (active or passive) versus 2D, 3D 
active versus 3D passive), we performed the statistical paired 
t-test on the computed values. The corresponding P-values 
for Hjorth complexity measures are presented in the 
Appendix section (Table I) and the CPEI t-test results are 
shown in Table II. 

Since our goal was to see the difference between playing 
game in 2D and 3D, the gameplay for 2D was used as the 
baseline. For 3D active versus 2D, the difference was very 
significant (P-value < 0.05) particularly in the occipital 
region for both parameters. However, for Hjorth, the 
difference was also significant in the temporal area too. 
Apparently, the difference between 3D passive and 2D was 
not apparent. 

In another comparison, the two viewing technologies 
were compared; 3D active versus 3D passive. Although the 
result was not obvious, the P-value for the visual processing 
area (occipital) was relatively low compared to all other brain 
regions.     

IV. DISCUSSION 

During eyes closed condition, generally subjects are more 
likely to be relaxed. Thus it is expected that the frequency 
changes was very minimal at this state. On the contrary, as 
subjects opened their eyes, the complexity level began to 
increase and this was reflected by the sudden changes of 
frequency found in all brain regions (refer Figure 1 and 
Figure 2).  

In addition to that, as more complex visual stimuli are 
present (in this case from 2D to 3D visualization), the 
complexity level of vision was further increased especially in 
the occipital region where most of the visual processes take 
place. Looking at this trend, we could say in general, that the 
CPEI results conformed to the Hjorth method.  A low CPEI 
value indicates that the time series is regular (signal consists 
only few motifs or pattern) while a value of 1 (maximum PE) 
is when all permutation have equal probability. As the CPEI 
values get higher with respect to the complexity of the visual 
stimulation (i.e., from eyes open to 2D and 3D), this indicates 
that there is an almost even distribution for all six motifs (i.e., 
a signal is claimed to be complex as it is composed of various 
patterns). So these results provide evidence that it is possible 
that our brain used more resources to decode the 3D content 
that is more complex and has more information to process 
compared to 2D. 

Our findings especially in the occipital lobe as well as in 
the temporal and frontal lobes suggest the possibility that 
there exist interaction between 3D perception and working 
memory. When subjects were exposed to the 3D 
environments, the complexity level was increased mainly in 
these two regions as the activation in the temporal and frontal 
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lobe was associated with working memory tasks (i.e., 
memory retrieval, encoding and storage). 

In comparing 3D active and 3D passive modes, the result 
however was more apparent using Hjorth complexity 
parameter (see Figure 1), where 3D active had the highest 
complexity nearly in all brain regions compared to 3D 
passive. Although it seems that 3D active has higher 
complexity than 3D passive, the P-value did not reach 
significance level (P-value >0.05) for both parameters. Also, 
based on user preference, it was found that the preference 
was equally divided between the two 3D modes (i.e., 3D 
active and 3D passive). 

V. CONCLUSION 

Our research work provides an application of time series 

analysis on EEG data in adults while playing video game in 

2D and 3D modes. We compared the signal regularity with 

respect to viewing conditions (i.e., 2D, 3D active and 3D 

passive) by evaluating Hjorth complexity and CPEI 

parameters. 

From the results, we would conclude that the use of 

Hjorth complexity parameter as well as the CPEI showed a 

good indication that these two methods may be useful in 

quantifying the EEG activity during 2D and 3D 

visualization. However, further investigation is required in 

analyzing other EEG complexity features in order to 

understand better about the relationship between EEG 

complexity and different brain regions, with respect to other 

3D visual tasks. 

 

APPENDIX 

TABLE I.  HJORTH COMPLEXITY P-VALUES 

Brain 

Region 

Comparison Groups  

3D A vs. 2D 3D P vs. 2D 3D A vs. 3D P 

Frontal 0.505 0.880 0.757 

Central 0.106 0.348 0.560 

Parietal 0.340 0.229 0.208 

Temporal 0.003a 0.081 0.100 

Occipital 0.006a 0.088 0.085 

a. P-value < 0.05 

TABLE II.  CPEI P-VALUES 

Brain 

Region 

Comparison Groups 

3D A vs. 2D 3D P vs. 2D 3D A vs. 3D P 

Frontal 0.120 0.699 0.421 

Central 0.552 0.281 0.548 

Parietal 0.148 0.144 0.977 

Temporal 0.423 0.486 0.936 

Occipital 0.052a 0.378 0.076 

a. P-value < 0.05 
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