
Figure 1. Frontal View of Nao robot. Image credit to [1].

An Auto-Operated Telepresence System For the Nao Humanoid Robot

Lukas Fürler
VIBOT Master student (2010-

2012), University De
Bourgogne,

Le Creusot, FRANCE
lukas.fuerler@gmail.com

Vineet Nagrath,
Laboratoire Le2i, UMR

CNRS 5158,
IUT, Le Creusot, FRANCE

vineet.nagrath@gmail.com

Aamir Saeed Malik
University Technology

Petronas,
Perak, MALAYSIA

aamir_saeed@petronas.com.my

Fabrice Meriaudeau,
Laboratoire Le2i, UMR

CNRS 5158,
IUT, Le Creusot, FRANCE

fabrice.meriaudeau@u-
bourgogne.fr

Abstract—This paper presents the development process of an
auto-operated telepresence system for the Nao humanoid robot
with the main functionality of directing the robot
autonomously to an operator-defined target location within a
static workspace. The workspace is observed by an array of
top-view cameras, which are used to localize the robot by
means of a color-based marker detection technique. The
system is accessible world-wide to the remote operator through
any Internet-capable device via a web-based control interface.
The web server responsible for coordinating the
communication between system and operator is hosted on a
cloud-based infrastructure online. The system was realized as a
case study for the Agent Relation Charts (ARCs), a new model-
driven design methodology for multi-agent cloud-based
systems conceived at the Le2i laboratory in Le Creusot,
France.

Keywords-Nao Humanoid Robot; Agent Relation Charts;
Multi Agent Systems; Telepresence; Teleoperation; Cloud
Computing.

I. INTRODUCTION

Telerobotics represents the area of robotics concerned
with the control of robots from a distance, primarily
employing wireless connections or the Internet for
communication. It consists of two major subfields, namely
Teleoperation i.e. to do work at a distance, and Telepresence
i.e. to “feel” present at a remote location. Telerobotic
systems play an important role in space exploration (e.g.
NASA’s Mars exploration rover), deep sea missions (e.g.
repair of offshore oil platforms by marine remotely operated
vehicles), robotic surgery (e.g. minimally invasive surgery
employing microscopic manipulators) or in general in
environments that are too hazardous to be directly accessed
by humans (e.g. for handling radioactive materials or
disarming bombs).

The aim of the work described here is to build an auto-
operated, multi-agent telepresence system for the Nao
humanoid robot using a structured model-driven design
approach. This document will present the development
process of the system in the following structure: The
remainder of the introductory section provides an overview
of the Nao humanoid robot, the central actor in the system.
The next section defines the project objectives, followed by a
section that presents related work in the field of Telerobotics
and outlines the ARC design methodology applied in the

project. Section IV is the central part of this document
explaining the development process of the telepresence
system from initial concept over design to final
implementation. Section V presents the project outcome by
showcasing the implemented system, and finally section VI
mentions some concluding remarks and provides pointers to
possible future work.

A. Nao Humanoid Robot
Nao, depicted in “Fig. 1”, is an autonomous humanoid

robot designed and manufactured by the French startup
company Aldebaran Robotics [1]. Its development began in
the year 2004 and the first academic edition for research and
education purposes was released in 2010. Nao is 58
centimeters tall and weighs around 4.3 kg. It has a total of 25
degrees of freedom and is equipped with a wide range of
sensors including 2 HD cameras, 4 microphones, a sonar
range finder, 2 IR emitters and receivers, 1 inertial board, 9
tactile sensors and 8 pressure sensors. Nao is programmed
via the NAOqi framework, a cross-platform and cross-
language software development kit, running on top of
OpenNAO, the GNU linux-based robot operating system.
The robot’s functionalities can be controlled remotely over
WiFi or Ethernet by means of proxy modules which
automatically handle the network communication for the
application programmer.

II. OBJECTIVES

The primary project objective is to build a
telepresence system that enables a remote operator to

execute tasks via a Nao robot in a controlled
environment. A task consists of reaching an operator-
defined target location within the workspace, executing a

2013 International Conference on Communication Systems and Network Technologies

978-0-7695-4958-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CSNT.2013.62

262

Figure 2. Five design views of the ARC meta model. Image credit to [2].

suitable action depending on whether the location could be
reached or not, and reporting back the requested feedback
(such as a picture of the remote location) to the operator. The
system should navigate the robot autonomously through the
workspace avoiding static obstacles on the way, and it
should be accessible from any Internet-connected client
device world-wide. Since the central element of the
telepresence system is the autonomous navigation module, a
preliminary experiment has been conducted to assess Nao’s
walking accuracy with the conclusion that the robot’s motion
is not precise enough to rely on it1. This gives rise to the
second objective, namely to design a closed-loop control
system for correcting and controlling Nao’s ground
locomotion, which is to be integrated into the telepresence
system.

The third objective is to develop the telepresence system
following the outlines of the Agent Relation Charts (ARCs),
the top layer of a new model-driven design methodology for
cloud-connected multi-agent systems conceived at the CNRS
Laboratory Le2i in Le Creusot (France) [2]. The project acts
as a case study for the methodology aimed at acquiring
subjective feedback about the applicability and usefulness of
the model in the context of a real system implementation.
The concepts of ARC modeling are discussed in the next
section.

III. RELATED WORK

This section showcases related research efforts in the
field of telerobotics and introduces the ARC design
methodology employed to develop the project.

A. Research in Telerobotics
The Telerobotics/Telepresence field is a vast research

area with a multitude of open problems still to be solved.
Consequently the research efforts vary from finding
theoretical solutions over devising new architectures up to
implementing real world systems aimed at serving a
particular purpose. For example Bao et. al developed a multi-
agent robot Tele-supervision architecture applied to the task
of hazardous materials detection [3]. Their system was based
on a three-level control hierarchy that allows instructing a
robot remotely to execute a certain mission autonomously
with the possibility of manual override in cases of
emergency. Another example is the work of Budihal et. al ,
who developed a next generation experiential telepresence
system with the aim of making the remote user experience
more immersive when compared to conventional 2-way
audio-video systems [4]. Their system consists of a
PRATHAM humanoid robot acting as the remote user’s
proxy for social interaction, a cognitive intelligence platform
as a central knowledge gathering point, and an experience
center that offers an advanced augmented reality control
interface to the operator. Rekleitis et. al on the other hand
developed a long-distance remote observation system suited

1 When instructed to walk 1m straight forward Nao missed
its expected location on average by 30cm. According to the
Aldebaran tech support this is the best accuracy the robot
can currently achieve

for exploration and assessment of underwater environments
by means of a Ramius amphibious robot [5]. As a
demonstration of the system the authors conducted a Tele-
learning experiment in which the robot deployed at seaside
in Barbados was accessed from a classroom in Canada. Their
work served as a proof of concept of robot tele-supervision
through web-based services and tele-learning as a means to
awaken students’ interest in the field of robotics.

A substantially different problem was tackled by Ding et.
al, who studied an optimal approach to path planning and
coordination of multiple remote operated Unmanned Aerial
Vehicles (UAVs) for the task of protecting a convoy of
ground vehicles [6]. The authors provide concise
mathematical models for the path planning strategies applied
to the protection of stationary and linearly moving ground
vehicles, however freely moving vehicles are not yet
supported in their model. As a last example, Santos et. al
proposed a multi-agent system for robot Teleoperation based
on a shared notion of reality between all participating entities
[7]. The main contribution of their work was to merge the
agents’ heterogeneous reality representations into a common
format such that the collective knowledge can be shared
efficiently. Several aspects of the systems found in the
literature, such as optimal path planning, autonomous
navigation and an Internet-based client interface were
brought together to create the telepresence system for Nao.

B. Agent Relation Charts
Agent Relation Charts are modeling and specification

tools for software development in cloud connected multi
agent systems with a focus on the way human transactions
take place [2]. ARCs are designed to be simple such that all
stakeholders of a project can actively participate in its
planning process. The primary actor in the ARC
methodology is an agent, which is any entity that is able to
carry out a transaction i.e. to adopt certain functionality
within the system. Agents can be passive (static predefined

behavior), active (dynamic adaptation to environment) or
hyperactive (exert control on other agents). The most
abstract top layer of the ARC Meta model relies on the five
design views shown in “Fig. 2”: The Relational and
Structural views describe the individual agents in the system
and the relationships among them. The Trade view shows the
services/demands of the agents and the Hyperactivity view is
used to model the control hierarchy in the system

263

Figure 3. Key elements of the Agent Relation Charts. Image credit to [2].

Figure 5. Overview of the telepresence system depicting the individual
agents, hardware and communication links.

Figure 4. Schematic overview of the robot workspace showing Nao, top-view
cameras used for localization and static obstacles on the floor.

(hyperactive agents control others). Finally the Behavioral
view is comprised by Use Case and Sequence ARC diagrams
aimed at modeling how the system behaves in different
usage scenarios.

The nomenclature and graphical rendering of the ARC
design elements have been defined rigorously with the goal
of ensuring consistency among the different diagram types.
The elements used in the top layer are depicted in “Fig. 3”.
As can be seen the symbols are divided into four groups
according to diagram type, however just the key elements
situated in the top left corner are described here. Agents
(blue squares) are entities that execute/access different
actions according to a built-in behavioral logic. Relations
(red rhombuses) are the connection points between agents or
other relations; they store and manage the variables that
govern the mutual behavior of the connected entities. Merges
(green equilateral triangles) are special relations whose task
it is to manage the information received through their input
links and provide it in a combined/processed format to other
agents. Clouds (white circles) are uniquely identifiable
networks that establish the communication between entities.
Co-hosted Regions (purple polygons) are used to group
entities that are hosted on the same physical device.

IV. SYSTEM DEVELOPMENT

This section describes the development stages of the
telepresence system for Nao. Firstly, the system concept is
introduced. Then the ARC high level design, the UML
medium level design and the algorithms employed in the
implementation are explained.

A. System Concept
For the sake of simplifying the navigation procedure the

robot workspace is assumed to be a flat, rectangular segment
of floor located in a controlled indoor environment large
enough to allow for free movements. As illustrated in “Fig.
4” such an environment is most efficiently observed using an
array of downward-facing top-view cameras mounted above
the workspace. The robot location within this 2D map (single
plane in 3D) can be represented by three parameters: The X
and Y coordinates and the heading angle.

In order to distribute the responsibilities within the sys-
tem over several physical hosts the following five software
agents are defined: A Cam Reader agent processes the

images acquired by a single camera and provides the relative
robot location to the Manager PC. The Manager PC is the
central control unit that executes tasks by localizing the robot
globally and instructing it where to go and what to do. The
Nao agent represents the control and communication
software running on the robot, responsible for providing an
interface for accessing the robot’s functionalities. The Web
Server agent is the communication point between Manager
PC and remote clients, and hence also provides the control
interface to the remote operator. Lastly, the Remote Client
agent is an abstract representation of any Internet-capable
client device that connects to the Web Server agent.

The “Fig. 5” provides an overview of the telepresence
system. The Cam Reader, Nao and Manager PC agents are
collaborating locally at the site of the system setup to execute
a robot task. They are interconnected via a Local Area
Network (LAN). The Web Server and Remote Client agents
can be located anywhere and are connected to the local
agents via Internet.

264

Figure 7. ARC diagram representing the Trade view

Figure 6. ARC diagram representing Structural and Relational views

B. ARC-High Level Design
All ARC diagrams required to model the different

aspects of the telepresence system were designed according
to the specifications of the hyperactive transaction model,
however due to the limited extent of this paper only two of
the primary diagrams are given here. As can be seen in “Fig.
6” the Structure-Relation diagram has a similar structure to
the system topology shown in “Fig. 5”. The Cam Reader
agents on the top left are connected to the Locator merge
block responsible for merging the relative locations into a
global one. The Manager PC is connected to two Nao agents;
however the second one is marked as optional since the
system currently only supports a single robot. The Web
Server has several connections to remote clients, which
suggests that it is serving multiple clients simultaneously.
The individual cloud connections between the agents are
numbered in order to identify them; same number means
same network. The co-hosted region in the center of the
diagram encloses the Manager agent and the Locator merge,
which collectively represent the Manager PC. Relations with
the same character identifier but a different number (e.g. B1
and B2) are instances of the same relation that are just
customized for different instances of the same agent (e.g.
Nao1 and Nao2).

The Trade-ARC shown in “Fig. 7” was used to model the
trade logic that governs the system’s service-demand
behavior. It describes the services/demands that the
individual agents offer/require. As can be seen in the
diagram the Remote Clients offer target location and action

specification given by the human operator to the MAN agent
which needs this information to execute the task. They
require an authentication service offered by the Web Server
and the status of task execution offered by the MAN agent.
The Web Server, once received a new task from the remote
client, requires the task execution service offered by the
MAN agent. The MAN agent needs the current location of
Nao and its status in order to control it. The global Nao
location is offered by the Locator, which demands the partial
locations from the Cam Readers. Note that the DLT, SLT,
DCM and SCM elements are not actively used within this
project, since all the service-demand associations in the
system are fixed and do not depend on the trade economy.

C. Implementation
The system implementation was entirely carried out in

Python [10], a high-level cross-platform interpreted
programming language offering a wealth of built-in libraries
and a rich syntax. All image-related processing was handled
by the Open Source Computer Vision library (OpenCV
[11]), and the communication with the Nao robot was done
by interfacing its functionalities through the NaoQi
framework. The Web Server agent was deployed online on
Google App Engine [12], a cloud computing framework for
developing and hosting web applications in Google-managed
data centers. For the Cam Reader and Manager PC agents a
simple command line interface was implemented, since these
two applications are solely used by the system administrator.
However in order to provide some monitoring facilities to
the administrator, the current camera frames and the path
followed by the robot are displayed in OpenCV windows in
the course of task execution. The Web Server on the other
hand provides an interactive HTML interface to the remote
clients which can be accessed worldwide through any
standard web browser at HTTP://NAOTELEROBOTICS.APPSPOT.COM/.
The main algorithms developed in the course of the
implementation process are shortly outlined in the following
sections.

D. Algorithms and Methods
In order to localize Nao within the view of a single

camera the color-based marker detection technique
summarized in “Fig. 8” was applied. A triangular marker
containing a circle in one of the three primary colors (red,
green and blue) in each corner has been mounted on top of
Nao’s head such that it can be clearly seen by the top-view
cameras. The largest blob in each of the masks is selected
and used to compute the geometrical information of the
marker: The marker center corresponds to the center of
gravity of the three color blobs and the orientation can be
obtained by calculating the slope of the line connecting the
marker center and the center of the red blob (assumed to be
the front).

Using the method described above the 2D pixel location
of the marker and its orientation can be obtained. However,
as illustrated in “Fig. 9”, this location does not correspond to
the real robot location on the ground. The problem arises
because the plane at which the marker is detected is situated
at a different depth from the camera w.r.t. the plane on which

265

Figure 8. Marker detection procedure used for localizing Nao within a
single camera view

Figure 9. Schematic workspace view depicting the difference between the
detected marker position and the real robot location

Figure 10. Composition of global workspace map from individual views

Figure 11. A* path planning to compute optimal paths to target location

Nao is standing. Since accurate robot localization is the key
factor for the success of the telepresence system a correction
procedure was implemented as explained next.

In the telepresence system the cameras are mounted on
the ceiling facing downwards, i.e. the Z-axis extending from
the cameras is vertical. Since the cameras’ positions are fixed
and Nao has a constant height when standing and walking,
the vertical distance between camera marker and camera
floor can be measured. Given these two distances and the
camera projection matrix (obtained by calibrating the camera
using OpenCV’s built-in chessboard pattern calibration
facilities) the method tries to estimate the robot’s pixel
location on the floor (P2DFloor) starting from the pixel
location of the marker (P2DMarker) in the following way:
P2DMarker is multiplied with the inverse of the camera matrix
yielding a 3D point on the ray extending from the focal point
through P2DMarker. This point is then normalized and
multiplied with the marker distance from the camera, which
gives the 3D location of the marker’s center point
(P3DMarker). Then the Z coordinate of the point is set to the
floor distance from the camera, i.e. the point is “moved
down” to the floor. The obtained P3DFloor is then projected
back onto the image plane by pre-multiplying it with the
camera matrix which yields P2DFloor, the real robot location
within the image.

In order to obtain a global map of the workspace the
individual camera views were combined as illustrated in
“Fig. 10”. The global map was created by rotating the
camera views by 90 and then merging them manually. The
offsets of the camera views w.r.t. the global map were

measured and included in the XML configuration file of the
Manager PC agent, which applied a simple transformation to
the relative camera-based coordinates to obtain the
coordinates within the global map.

In order to direct the robot from any valid start location
within the workspace to an operator-defined target location
an optimal path connecting the two points has to be planned.
Since doing path planning at pixel level is not feasible (due
to the robot’s walking inaccuracies and size) the workspace
map has been subdivided into the cell array depicted in “Fig.
11”. Each cell is assigned a value (0 for obstacle, 1 for
dangerous because close to obstacle, 2 for accessible)
depending on its location within the map. In order to find an
optimal path within the described cell matrix, a customized
version of A*, an efficient graph traversal algorithm invented
in the year 1968 at the Stanford Research Institute, is
employed. The cost of a node within the path is computed as
the weighted sum of four factors: The cost to reach the
previous node along the path, the distance of the move to
reach the current node, a factor penalizing the change of
direction (since Nao takes time to do so), and a factor
penalizing the access of dangerous cells (in order to keep
Nao at a safe distance from obstacles). A sample path
computed by the A* planner is shown in “Fig. 11(b)”.

V. EXPERIMENTAL RESULTS

The experimental setup at the UTP laboratory shown in
“Fig. 12” was exactly built according to the schematic
overview depicted in "Fig. 5". In order to assess the
performance of the telepresence system an array of

266

Figure 12. Composition of global workspace map from individual views

experiments has been conducted. In most of these
experiments Nao was able to successfully reach the target
location and complete the given task. However in some cases
the execution could not be terminated, because Nao tended
to overshoot the specified target location and hence had to
turn around (a full 180 rotation) in order to come back. Since
Nao is unable to turn on the spot, this rotation caused an
unintentional change in location and hence it missed the
location again. The result of this was that the robot was
oscillating closely around the final location but was unable
reach it exactly. The problem was resolved by specifying a
tolerated distance of half a cell (=7.5 cm) to the target
location.

After completing the Web Server agent the next testing
stage was started by conducting the following cross-
continent experiment: An operator issued three different
tasks through the remote client interface from his laptop
located at the Le2i laboratory in Le Creusot, FRANCE and
all of them were completed successfully by the robot in the
UTP laboratory, MALAYSIA. This showcases the location
and device independence of the telepresence system, i.e. as
long as the remote operator has an Internet connection he/she
can control the system from anywhere in the world.

VI. CONCLUSIONS & FUTURE WORK

A multi-agent telepresence system able to autonomously
navigate a Nao humanoid robot to an operator-defined target
location within a static environment has been successfully
implemented. A closed-loop gait control paradigm for the
Nao robotic platform has been devised and proven to be
effective, i.e. despite the significant inaccuracy in the robot’s
motion it was able navigate to the target location while safely
avoiding obstacles. The workspace was observed by three
top-view cameras which were used to localize the robot
using a color-based marker detection technique. An adapted
version of the A* search algorithm was applied to plan an
optimal path from current to target position. The conducted
experiments show that the system is operative and that it
satisfies all usage scenarios planned during the ARC design
stage. The system was developed using a structured multi-
stage approach, employing ARC diagrams for abstract high
level planning, UML class diagrams for agent modeling and
Python in combination with several libraries as
implementation language. The ARC design methodology has
proven to be a valuable tool to express the conceptual system
design and to model its most relevant aspects in a consistent

platform-independent manner. However just the top layer
was formulated at the time of creating this project and hence
a comprehensive evaluation of its applicability and
efficiency can only be done once all model layers have been
finalized. The experiences with the ARC methodology made
throughout the project were reported to the authors [2].

One possible direction for future work could be to enable
the collaboration of multiple robots within the workspace,
which would allow for the formulation of more sophisticated
tasks. Such an extension would involve the design of a
coordination strategy for the robots and the development of a
new marker detection technique, since several distinct
markers would need to be detected simultaneously. Another
improvement of the system could be to make the
telepresence experience of the remote user more immersive
by e.g. including a live view of the robot’s camera in the
web-based interface. It would also be useful to develop tools
that aid the system administrator in doing the initial setup by
carrying out some tasks such as the intrinsic camera
calibration or the global map composition automatically.

REFERENCES

[1] A. Robotics, “Aldebaran Robotics - Company,” Paris, France, 2012.
[Online]. Available: http://www.aldebaran-robotics.com/ 1

[2] V. Nagrath, F. Meriaudeau, A. Saeed Malik, and O. Morel, “Agent
Relation Charts (ARCs) for Modeling Cloud based transactions,” in
Proceedings of the International Conference on Communication Sys-
tems and Network Technologies. Rajkot, India: Laboratoire Le2i,
UMR CNRS 5158, IUT, Le Creusot, FRANCE; University
Technology Petronas, Perak, MALAYSIA, 2012, p. 6. 2, 3, 4, 7

[3] J. Bao, Y. Guo, A. Song, and H. Tang, “A Multi-Agent Based Robot
Telesupervision Architecture for Hazardous Materials Detection,” in
Proceedings of the 2010 IEEE International Conference on
Information and Automation, Harbin, China, 2010, pp. 2428–2432. 2

[4] R. Budihal, N. Mohanan, S. A. Anand, and S. S. Kamat, “Exploration
and Implementation of a Next Generation Telepresence System,”
Ban-galore, India, pp. 1–6. 2

[5] I. Rekleitis, G. Dudek, Y. Schoueri, P. Giguere, and J. Sattar, “Telep-
resence across the Ocean,” in Canadian Conference on Computer and
Robot Vision, Montreal, QC, Canada, 2010, pp. 1–8. 2

[6] X. C. Ding, A. R. Rahmani, and M. Egerstedt, “Multi-UAV Convoy
Protection : An Optimal Approach to Path Planning and
Coordination,” IEEE Transactions on Robotics, vol. 26, no. 2, pp.
256–268, 2010. 2

[7] V. Santos, P. Santana, L. Correia, and J. Barata, “Teleoperation
mecha-nisms in a Multi-Agent System,” Lisbon, Portugal, pp. 170–
176, 2008. 2

[8] L. Furler,¨ A. Saeed Malik, F. Meriaudeau, and V. Nagrath, “An
Auto-Operated Telepresence System for the Nao Humanoid Robot,”
MSc Thesis, Universiti Teknologi Petronas, 2012. [Online].
Available: http://naotelerobotics.shorturl.com 3

[9] “OMG Unified Modeling Language (OMG UML), Infrastructure,”
Available: http://www.omg.org/spec/UML/2.4.1/ Infrastructure 4

[10] G. Van Rossum, “Python Programming Language,” Amsterdam,
1989. [Online]. Available: http://www.python.org/ 5

[11] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000. [Online]. Available:
http://opencv.willowgarage.com/wiki/ Welcome 5

[12] D. Sanderson, Programming Google App Engine: Build and Run
Scal-able Web Apps on Google’s Infrastructure, 1st ed., M. Loukides,
Ed. Sebastopol, CA: O’Reilly Media, Inc., 2010.

267

