
Figure 1. Frontal View of Nao robot. Image credit to  [1].

An Auto-Operated Telepresence System For the Nao Humanoid Robot  

Lukas Fürler 
VIBOT Master student (2010-

2012), University De 
Bourgogne,

Le Creusot, FRANCE 
lukas.fuerler@gmail.com 

Vineet Nagrath, 
Laboratoire Le2i, UMR 

CNRS 5158,   
IUT, Le Creusot, FRANCE 

vineet.nagrath@gmail.com 

Aamir Saeed Malik 
University Technology 

Petronas,
Perak, MALAYSIA

aamir_saeed@petronas.com.my

Fabrice Meriaudeau, 
Laboratoire Le2i, UMR 

CNRS 5158, 
IUT, Le Creusot, FRANCE 

fabrice.meriaudeau@u-
bourgogne.fr

Abstract—This paper presents the development process of an 
auto-operated telepresence system for the Nao humanoid robot 
with the main functionality of directing the robot 
autonomously to an operator-defined target location within a 
static workspace. The workspace is observed by an array of 
top-view cameras, which are used to localize the robot by 
means of a color-based marker detection technique. The 
system is accessible world-wide to the remote operator through 
any Internet-capable device via a web-based control interface. 
The web server responsible for coordinating the 
communication between system and operator is hosted on a 
cloud-based infrastructure online. The system was realized as a 
case study for the Agent Relation Charts (ARCs), a new model-
driven design methodology for multi-agent cloud-based 
systems conceived at the Le2i laboratory in Le Creusot, 
France. 
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I. INTRODUCTION

Telerobotics represents the area of robotics concerned 
with the control of robots from a distance, primarily 
employing wireless connections or the Internet for 
communication. It consists of two major subfields, namely 
Teleoperation i.e. to do work at a distance, and Telepresence 
i.e. to “feel” present at a remote location. Telerobotic 
systems play an important role in space exploration (e.g. 
NASA’s Mars exploration rover), deep sea missions (e.g. 
repair of offshore oil platforms by marine remotely operated 
vehicles), robotic surgery (e.g. minimally invasive surgery 
employing microscopic manipulators) or in general in 
environments that are too hazardous to be directly accessed 
by humans (e.g. for handling radioactive materials or 
disarming bombs). 

The aim of the work described here is to build an auto-
operated, multi-agent telepresence system for the Nao 
humanoid robot using a structured model-driven design 
approach. This document will present the development 
process of the system in the following structure: The 
remainder of the introductory section provides an overview 
of the Nao humanoid robot, the central actor in the system. 
The next section defines the project objectives, followed by a 
section that presents related work in the field of Telerobotics 
and outlines the ARC design methodology applied in the 

project. Section IV is the central part of this document 
explaining the development process of the telepresence 
system from initial concept over design to final 
implementation. Section V presents the project outcome by 
showcasing the implemented system, and finally section VI 
mentions some concluding remarks and provides pointers to 
possible future work. 

A. Nao Humanoid Robot 
Nao, depicted in “Fig. 1”, is an autonomous humanoid 

robot designed and manufactured by the French startup 
company Aldebaran Robotics [1]. Its development began in 
the year 2004 and the first academic edition for research and 
education purposes was released in 2010. Nao is 58 
centimeters tall and weighs around 4.3 kg. It has a total of 25 
degrees of freedom and is equipped with a wide range of 
sensors including 2 HD cameras, 4 microphones, a sonar 
range finder, 2 IR emitters and receivers, 1 inertial board, 9 
tactile sensors and 8 pressure sensors. Nao is programmed 
via the NAOqi framework, a cross-platform and cross-
language software development kit, running on top of 
OpenNAO, the GNU linux-based robot operating system. 
The robot’s functionalities can be controlled remotely over 
WiFi or Ethernet by means of proxy modules which 
automatically handle the network communication for the 
application programmer. 

II. OBJECTIVES

The  primary  project  objective  is  to  build  a  
telepresence system that  enables  a  remote  operator  to  

execute  tasks  via a  Nao robot in a controlled  
environment.  A task consists of reaching an operator-
defined target location within the workspace, executing a 
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Figure 2. Five design views of the ARC meta model. Image credit to  [2].

suitable action depending on whether the location could be 
reached or not, and reporting back the requested feedback 
(such as a picture of the remote location) to the operator. The 
system should navigate the robot autonomously through the 
workspace avoiding static obstacles on the way, and it 
should be accessible from any Internet-connected client 
device world-wide. Since the central element of the 
telepresence system is the autonomous navigation module, a 
preliminary experiment has been conducted to assess Nao’s 
walking accuracy with the conclusion that the robot’s motion 
is not precise enough to rely on it1. This gives rise to the 
second objective, namely to design a closed-loop control 
system for correcting and controlling Nao’s ground 
locomotion, which is to be integrated into the telepresence 
system. 

The third objective is to develop the telepresence system 
following the outlines of the Agent Relation Charts (ARCs), 
the top layer of a new model-driven design methodology for 
cloud-connected multi-agent systems conceived at the CNRS 
Laboratory Le2i in Le Creusot (France) [2]. The project acts 
as a case study for the methodology aimed at acquiring 
subjective feedback about the applicability and usefulness of 
the model in the context of a real system implementation. 
The concepts of ARC modeling are discussed in the next 
section. 

III. RELATED WORK

This section showcases related research efforts in the 
field of telerobotics and introduces the ARC design 
methodology employed to develop the project. 

A. Research in Telerobotics 
The Telerobotics/Telepresence field is a vast research 

area with a multitude of open problems still to be solved. 
Consequently the research efforts vary from finding 
theoretical solutions over devising new architectures up to 
implementing real world systems aimed at serving a 
particular purpose. For example Bao et. al developed a multi-
agent robot Tele-supervision architecture applied to the task 
of hazardous materials detection [3]. Their system was based 
on a three-level control hierarchy that allows instructing a 
robot remotely to execute a certain mission autonomously 
with the possibility of manual override in cases of 
emergency. Another example is the work of Budihal et. al , 
who developed a next generation experiential telepresence 
system with the aim of making the remote user experience 
more immersive when compared to conventional 2-way 
audio-video systems  [4]. Their system consists of a 
PRATHAM humanoid robot acting as the remote user’s 
proxy for social interaction, a cognitive intelligence platform 
as a central knowledge gathering point, and an experience 
center that offers an advanced augmented reality control 
interface to the operator. Rekleitis et. al on the other hand 
developed a long-distance remote observation system suited 

                                                          
1 When instructed to walk 1m straight forward Nao missed 
its expected location on average by 30cm. According to the 
Aldebaran tech support this is the best accuracy the robot 
can currently achieve 

for exploration and assessment of underwater environments 
by means of a Ramius amphibious robot [5]. As a 
demonstration of the system the authors conducted a Tele-
learning experiment in which the robot deployed at seaside 
in Barbados was accessed from a classroom in Canada. Their 
work served as a proof of concept of robot tele-supervision 
through web-based services and tele-learning as a means to 
awaken students’ interest in the field of robotics.

A substantially different problem was tackled by Ding et. 
al, who studied an optimal approach to path planning and 
coordination of multiple remote operated Unmanned Aerial 
Vehicles (UAVs) for the task of protecting a convoy of 
ground vehicles [6]. The authors provide concise 
mathematical models for the path planning strategies applied 
to the protection of stationary and linearly moving ground 
vehicles, however freely moving vehicles are not yet 
supported in their model. As a last example, Santos et. al 
proposed a multi-agent system for robot Teleoperation based 
on a shared notion of reality between all participating entities  
[7]. The main contribution of their work was to merge the 
agents’ heterogeneous reality representations into a common 
format such that the collective knowledge can be shared 
efficiently. Several aspects of the systems found in the 
literature, such as optimal path planning, autonomous 
navigation and an Internet-based client interface were 
brought together to create the telepresence system for Nao. 

B. Agent Relation Charts 
Agent Relation Charts are modeling and specification 

tools for software development in cloud connected multi 
agent systems with a focus on the way human transactions 
take place [2]. ARCs are designed to be simple such that all 
stakeholders of a project can actively participate in its 
planning process. The primary actor in the ARC 
methodology is an agent, which is any entity that is able to 
carry out a transaction i.e. to adopt certain functionality 
within the system. Agents can be passive (static predefined 

behavior), active (dynamic adaptation to environment) or 
hyperactive (exert control on other agents). The most 
abstract top layer of the ARC Meta model relies on the five 
design views shown in “Fig. 2”: The Relational and 
Structural views describe the individual agents in the system 
and the relationships among them. The Trade view shows the 
services/demands of the agents and the Hyperactivity view is 
used to model the control hierarchy in the system 

263



Figure 3. Key elements of the Agent Relation Charts. Image credit to  [2].

Figure 5. Overview of the telepresence system depicting the individual 
agents, hardware and communication links.

Figure 4. Schematic overview of the robot workspace showing Nao, top-view 
cameras used for localization and static obstacles on the floor.

(hyperactive agents control others). Finally the Behavioral 
view is comprised by Use Case and Sequence ARC diagrams 
aimed at modeling how the system behaves in different 
usage scenarios. 

The nomenclature and graphical rendering of the ARC 
design elements have been defined rigorously with the goal 
of ensuring consistency among the different diagram types. 
The elements used in the top layer are depicted in “Fig. 3”.
As can be seen the symbols are divided into four groups 
according to diagram type, however just the key elements 
situated in the top left corner are described here. Agents 
(blue squares) are entities that execute/access different 
actions according to a built-in behavioral logic. Relations 
(red rhombuses) are the connection points between agents or 
other relations; they store and manage the variables that 
govern the mutual behavior of the connected entities. Merges 
(green equilateral triangles) are special relations whose task 
it is to manage the information received through their input 
links and provide it in a combined/processed format to other 
agents. Clouds (white circles) are uniquely identifiable 
networks that establish the communication between entities. 
Co-hosted Regions (purple polygons) are used to group 
entities that are hosted on the same physical device. 

IV. SYSTEM DEVELOPMENT

This section describes the development stages of the 
telepresence system for Nao. Firstly, the system concept is 
introduced. Then the ARC high level design, the UML 
medium level design and the algorithms employed in the 
implementation are explained. 

A. System Concept 
For the sake of simplifying the navigation procedure the 

robot workspace is assumed to be a flat, rectangular segment 
of floor located in a controlled indoor environment large 
enough to allow for free movements. As illustrated in “Fig.
4” such an environment is most efficiently observed using an 
array of downward-facing top-view cameras mounted above 
the workspace. The robot location within this 2D map (single 
plane in 3D) can be represented by three parameters: The X 
and Y coordinates and the heading angle.  

In order to distribute the responsibilities within the sys-
tem over several physical hosts the following five software 
agents are defined: A Cam Reader agent processes the 

images acquired by a single camera and provides the relative 
robot location to the Manager PC. The Manager PC is the 
central control unit that executes tasks by localizing the robot 
globally and instructing it where to go and what to do. The 
Nao agent represents the control and communication 
software running on the robot, responsible for providing an 
interface for accessing the robot’s functionalities. The Web 
Server agent is the communication point between Manager 
PC and remote clients, and hence also provides the control 
interface to the remote operator. Lastly, the Remote Client 
agent is an abstract representation of any Internet-capable 
client device that connects to the Web Server agent. 

The “Fig. 5” provides an overview of the telepresence 
system. The Cam Reader, Nao and Manager PC agents are 
collaborating locally at the site of the system setup to execute 
a robot task. They are interconnected via a Local Area 
Network (LAN). The Web Server and Remote Client agents 
can be located anywhere and are connected to the local 
agents via Internet. 
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Figure 7. ARC diagram representing the Trade view

Figure 6. ARC diagram representing Structural and Relational views

B. ARC-High Level Design 
All ARC diagrams required to model the different 

aspects of the telepresence system were designed according 
to the specifications of the hyperactive transaction model, 
however due to the limited extent of this paper only two of 
the primary diagrams are given here. As can be seen in “Fig. 
6” the Structure-Relation diagram has a similar structure to 
the system topology shown in “Fig. 5”. The Cam Reader 
agents on the top left are connected to the Locator merge 
block responsible for merging the relative locations into a 
global one. The Manager PC is connected to two Nao agents; 
however the second one is marked as optional since the 
system currently only supports a single robot. The Web 
Server has several connections to remote clients, which 
suggests that it is serving multiple clients simultaneously. 
The individual cloud connections between the agents are 
numbered in order to identify them; same number means 
same network. The co-hosted region in the center of the 
diagram encloses the Manager agent and the Locator merge, 
which collectively represent the Manager PC. Relations with 
the same character identifier but a different number (e.g. B1 
and B2) are instances of the same relation that are just 
customized for different instances of the same agent (e.g. 
Nao1 and Nao2). 

The Trade-ARC shown in “Fig. 7” was used to model the 
trade logic that governs the system’s service-demand 
behavior. It describes the services/demands that the 
individual agents offer/require. As can be seen in the 
diagram the Remote Clients offer target location and action 

specification given by the human operator to the MAN agent 
which needs this information to execute the task. They 
require an authentication service offered by the Web Server 
and the status of task execution offered by the MAN agent. 
The Web Server, once received a new task from the remote 
client, requires the task execution service offered by the 
MAN agent. The MAN agent needs the current location of 
Nao and its status in order to control it. The global Nao 
location is offered by the Locator, which demands the partial 
locations from the Cam Readers. Note that the DLT, SLT, 
DCM and SCM elements are not actively used within this 
project, since all the service-demand associations in the 
system are fixed and do not depend on the trade economy. 

C. Implementation 
The system implementation was entirely carried out in 

Python [10], a high-level cross-platform interpreted 
programming language offering a wealth of built-in libraries 
and a rich syntax. All image-related processing was handled 
by the Open Source Computer Vision library (OpenCV 
[11]), and the communication with the Nao robot was done 
by interfacing its functionalities through the NaoQi 
framework. The Web Server agent was deployed online on 
Google App Engine [12], a cloud computing framework for 
developing and hosting web applications in Google-managed 
data centers. For the Cam Reader and Manager PC agents a 
simple command line interface was implemented, since these 
two applications are solely used by the system administrator. 
However in order to provide some monitoring facilities to 
the administrator, the current camera frames and the path 
followed by the robot are displayed in OpenCV windows in 
the course of task execution. The Web Server on the other 
hand provides an interactive HTML interface to the remote 
clients which can be accessed worldwide through any 
standard web browser at HTTP://NAOTELEROBOTICS.APPSPOT.COM/.
The main algorithms developed in the course of the 
implementation process are shortly outlined in the following 
sections.

D. Algorithms and Methods 
In order to localize Nao within the view of a single 

camera the color-based marker detection technique 
summarized in “Fig. 8” was applied. A triangular marker 
containing a circle in one of the three primary colors (red, 
green and blue) in each corner has been mounted on top of 
Nao’s head such that it can be clearly seen by the top-view 
cameras. The largest blob in each of the masks is selected 
and used to compute the geometrical information of the 
marker: The marker center corresponds to the center of 
gravity of the three color blobs and the orientation can be 
obtained by calculating the slope of the line connecting the 
marker center and the center of the red blob (assumed to be 
the front). 

Using the method described above the 2D pixel location 
of the marker and its orientation can be obtained. However, 
as illustrated in “Fig. 9”, this location does not correspond to 
the real robot location on the ground. The problem arises 
because the plane at which the marker is detected is situated
at a different depth from the camera w.r.t. the plane on which 
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Figure 8. Marker detection procedure used for localizing Nao within a 
single camera view

Figure 9. Schematic workspace view depicting the difference between the 
detected marker position and the real robot location

Figure 10. Composition of global workspace map from individual views

Figure 11. A* path planning to compute optimal paths to target location

Nao is standing. Since accurate robot localization is the key 
factor for the success of the telepresence system a correction 
procedure was implemented as explained next.  

In the telepresence system the cameras are mounted on 
the ceiling facing downwards, i.e. the Z-axis extending from 
the cameras is vertical. Since the cameras’ positions are fixed 
and Nao has a constant height when standing and walking, 
the vertical distance between camera marker and camera 
floor can be measured. Given these two distances and the 
camera projection matrix (obtained by calibrating the camera 
using OpenCV’s built-in chessboard pattern calibration 
facilities) the method tries to estimate the robot’s pixel 
location on the floor (P2DFloor) starting from the pixel 
location of the marker (P2DMarker) in the following way: 
P2DMarker is multiplied with the inverse of the camera matrix 
yielding a 3D point on the ray extending from the focal point 
through P2DMarker. This point is then normalized and 
multiplied with the marker distance from the camera, which 
gives the 3D location of the marker’s center point 
(P3DMarker). Then the Z coordinate of the point is set to the 
floor distance from the camera, i.e. the point is “moved 
down” to the floor. The obtained P3DFloor is then projected 
back onto the image plane by pre-multiplying it with the 
camera matrix which yields P2DFloor, the real robot location 
within the image.  

In order to obtain a global map of the workspace the 
individual camera views were combined as illustrated in 
“Fig. 10”. The global map was created by rotating the 
camera views by 90 and then merging them manually. The 
offsets of the camera views w.r.t. the global map were 

measured and included in the XML configuration file of the 
Manager PC agent, which applied a simple transformation to 
the relative camera-based coordinates to obtain the 
coordinates within the global map. 

In order to direct the robot from any valid start location 
within the workspace to an operator-defined target location 
an optimal path connecting the two points has to be planned. 
Since doing path planning at pixel level is not feasible (due 
to the robot’s walking inaccuracies and size) the workspace 
map has been subdivided into the cell array depicted in “Fig. 
11”. Each cell is assigned a value (0 for obstacle, 1 for 
dangerous because close to obstacle, 2 for accessible) 
depending on its location within the map. In order to find an 
optimal path within the described cell matrix, a customized 
version of A*, an efficient graph traversal algorithm invented 
in the year 1968 at the Stanford Research Institute, is 
employed. The cost of a node within the path is computed as 
the weighted sum of four factors: The cost to reach the 
previous node along the path, the distance of the move to 
reach the current node, a factor penalizing the change of 
direction (since Nao takes time to do so), and a factor 
penalizing the access of dangerous cells (in order to keep 
Nao at a safe distance from obstacles). A sample path 
computed by the A* planner is shown in “Fig. 11(b)”. 

V. EXPERIMENTAL RESULTS

The experimental setup at the UTP laboratory shown in 
“Fig. 12” was exactly built according to the schematic 
overview depicted in "Fig. 5". In order to assess the 
performance of the telepresence system an array of 
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Figure 12. Composition of global workspace map from individual views

experiments has been conducted. In most of these 
experiments Nao was able to successfully reach the target 
location and complete the given task. However in some cases 
the execution could not be terminated, because Nao tended 
to overshoot the specified target location and hence had to 
turn around (a full 180 rotation) in order to come back. Since 
Nao is unable to turn on the spot, this rotation caused an 
unintentional change in location and hence it missed the 
location again. The result of this was that the robot was 
oscillating closely around the final location but was unable 
reach it exactly. The problem was resolved by specifying a 
tolerated distance of half a cell (=7.5 cm) to the target 
location.  

After completing the Web Server agent the next testing 
stage was started by conducting the following cross-
continent experiment: An operator issued three different 
tasks through the remote client interface from his laptop 
located at the Le2i laboratory in Le Creusot, FRANCE and 
all of them were completed successfully by the robot in the 
UTP laboratory, MALAYSIA. This showcases the location 
and device independence of the telepresence system, i.e. as 
long as the remote operator has an Internet connection he/she 
can control the system from anywhere in the world. 

VI. CONCLUSIONS & FUTURE WORK

A multi-agent telepresence system able to autonomously 
navigate a Nao humanoid robot to an operator-defined target 
location within a static environment has been successfully 
implemented. A closed-loop gait control paradigm for the 
Nao robotic platform has been devised and proven to be 
effective, i.e. despite the significant inaccuracy in the robot’s 
motion it was able navigate to the target location while safely 
avoiding obstacles. The workspace was observed by three 
top-view cameras which were used to localize the robot 
using a color-based marker detection technique. An adapted 
version of the A* search algorithm was applied to plan an 
optimal path from current to target position. The conducted 
experiments show that the system is operative and that it 
satisfies all usage scenarios planned during the ARC design 
stage. The system was developed using a structured multi-
stage approach, employing ARC diagrams for abstract high 
level planning, UML class diagrams for agent modeling and 
Python in combination with several libraries as 
implementation language. The ARC design methodology has 
proven to be a valuable tool to express the conceptual system 
design and to model its most relevant aspects in a consistent 

platform-independent manner. However just the top layer 
was formulated at the time of creating this project and hence 
a comprehensive evaluation of its applicability and 
efficiency can only be done once all model layers have been 
finalized. The experiences with the ARC methodology made 
throughout the project were reported to the authors [2]. 

One possible direction for future work could be to enable 
the collaboration of multiple robots within the workspace, 
which would allow for the formulation of more sophisticated 
tasks. Such an extension would involve the design of a 
coordination strategy for the robots and the development of a 
new marker detection technique, since several distinct 
markers would need to be detected simultaneously. Another 
improvement of the system could be to make the 
telepresence experience of the remote user more immersive 
by e.g. including a live view of the robot’s camera in the 
web-based interface. It would also be useful to develop tools 
that aid the system administrator in doing the initial setup by 
carrying out some tasks such as the intrinsic camera 
calibration or the global map composition automatically. 
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