
Introducing The Concept of Hyperactivity in Multi Agent Systems

Vineet Nagrath,
Laboratoire Le2i, UMR

CNRS 5158,
IUT, Le Creusot, FRANCE

vineet.nagrath
@gmail.com

Fabrice Meriaudeau,
Laboratoire Le2i, UMR

CNRS 5158,
IUT, Le Creusot, FRANCE

fabrice.meriaudeau
@u-bourgogne.fr

Aamir Saeed Malik
University Technology

Petronas,
Perak, MALAYSIA

aamir_saeed
@petronas.com.my

Olivier Morel
Laboratoire Le2i, UMR

CNRS 5158,
IUT, Le Creusot, FRANCE

Olivier.Morel
@u-bourgogne.fr

Abstract— Software Agents are no longer the simple
communication gateways for devices to interconnect using one
or more networks. With Multi Agent Systems contributing in a
wide spectrum of intelligent systems, the Agents are in a more
proactive role than just being responsible for passing messages
between their respective base systems. Agent Relation Charts
and the Hyperactive Transaction Model in general is one of the
recent attempts of developing a multi-view design model for
Multi Agent Systems. The model has made a clear distinction
in the regular and intelligent activities of an agent. Based on
these differences, the agents are classified into three main
categories named as Passive, Active and Hyperactive Agents.
In this paper we first attempt to clearly explain the basis on
which distinctions are made in the activities of an agent, and
why such a distinction improves the overall design process for
the multi agent systems. We then define and demonstrate the
three kinds of agents based on the distinctions made in their
activities and thus introducing the concept of Hyperactivity in
a multi agent system.

Keywords- Multi Agent Systems, Model Based Engineering,
Multi-View Modeling, , Agent Relation Charts, Hyperactive
Agents, Software Agents.

I. INTRODUCTION

A. Multi Agent Systems
There is no one definition available for Agents which

capture the concept of agent in a technically precise manner.
Some of the most cited definitions are given by [1], [2] and
[3] where agents are defined as autonomous computer
systems which work flexibly in a multi-agent system
(dynamic, unpredictable and open environments). Agents
have individual goals which may or may not be same as the
other agents present in the environment and systems where
more than one agent is playing are known as multi agent
systems. To summarize [4] Agents are autonomous problem
solving entities embedded in a particular observable
environment with specific role and particular objectives.

Distributed Artificial Intelligence (DAI) has two sub
divisions [5] namely distributed problem solving (DPS) and
multi agent systems (MAS). Unlike DPS which deals with
the distribution of the process of problem solving, MAS
highlights the behavioral and interaction related complexities
[6]. As multiple agent systems are studied along a wide
spectrum of domains, there are several definitions available.

We can summarize the widely accepted definitions as
follows.

MAS are systems with variable number of agents with
particular goals or set of tasks. They interact with each other
by flexible and complex protocols. The combined effect of
simple competitions and giving equal importance to
individual and collective tasks give rise to "the intelligence"
in MAS [7]. MAS are thus a network of entities capable of
working together to solve problems beyond the capability of
any one entity.

B. Software Engineering for Agents
Agent-Oriented Software Engineering (AOSE) proposes

to think in an "agent-oriented mindset" to split the problem
into agents while a more refined version of AOSE, Agent-
Based Software Engineering (ABSE) is more practical
towards agent building. But once we have decided to think in
terms of agents and have subdivided the problem into agents,
the task still remains to write a good design for the agent. A
design that is complete as well as close to popular industrial
software engineering practices. The design model must also
present opportunities for all stake holders to contribute in the
design process. MAS can be very complicated and thus
require multi-layer abstraction in the design process.

With the emergence of affordable networked computing
technologies and the variety of communication media
available to them, the new age designers need exact software
engineering tools to convert their ideas to designs.

C. Model Based Engineering
The complexity of the robotic/agent systems is

increasing. Consumer Demand and business logic pushes the
designers to develop flexible, adaptable and good quality
products in less time. The software engineering methods for
optimizing production directly applies to the robotic/agent
products[8] and thus its natural to keep an eye on the
software world to gain benefits for the robotic/agent
industry.

In this light, in the past 10 years, agent/robotic software
have got its influence from the Component based and object
oriented software development models [8]. In the same way,
the newly appeared model driven engineering (MDE)
paradigm [9] has caught the attention of the robotic/agent
system developers.

2013 International Conference on Communication Systems and Network Technologies

978-0-7695-4958-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CSNT.2013.117

542

Figure 1. Model Driven Architecture for robotic product development [8].

Figure 2. The three views of V3CMM [8]. Figure 3. The five Views of HTM and its topmost ARC layer [11].

MDE is a concept driven approach towards design with
less focus on the implementational details. The real systems
are represented in the design with a very abstract and simple
version called its model [10]. In the design process, a number
of non-technical players also have to make their contribution.
Models, which are a very simple representation of the system
goes beyond the technical and implementational knowledge
of the system and enables everyone to contribute in the
design process. This approach was further strengthened
when in the year 2001 the Object Management Group
(OMG) published their work on the Model Driven
Architecture (MDA) [9]. OMG's MDA had three layered
structure “Fig. 1” where Computational independent models
(CIM) with maximum abstraction were made for domain
experts, Platform-independent Models (PIM) with middle
level abstraction were suited for software and system
designers and lowest level Platform-Specific Models (PSM)
were for implementation level engineers. When the platform
is not clearly defined, MDA allows a thin border between
PIMs and PSMs.

D. Multi-View Modeling
The core concept behind multiple view modeling is

representing the design as a set of different views or
representations, each one highlighting a particular kind of
design element. The advantage of a multi-view model is that
it allows simplifying a complex system design and provides
various layers of abstraction to various viewers.

One example multi view modeling methodology for
robotic products is V3CMM, which is a 3-View Component
Meta-Model for Model-Driven Robotic Software
Development [8]. In this model “Fig. 2” the three views
represent different kind of information about the design. The
structural view defines the overall structure of the system,
the coordination view defines the event-driven functioning
and the algorithmic view describes each component’s
individual working algorithm [8].

II. HYPERACTIVE TRANSACTION MODEL & AGENT
RELATION CHARTS (ARCS)

Hyperactive transaction model [11] is an attempt to
provide a model for designing multi agent systems with a
different "thought process". A similar example can be seen in
object oriented software modeling. Object oriented
programming is not only a different way to write code, but a
new "thought process" to design software where we think in
terms of objects in real life before making their equivalent
class in the code. Likewise in Hyperactive Transaction
Model, the attempt is to think of agents in terms of humans
working together in a team.

Like humans have relationships, in HTM, agents have a
relation with other agents. There relations have parameters
that govern the interaction and trade between the related
agents. In HTM, the trade between agents is modeled in a
separate view. Once the relations, trade logics and
hyperactivity (Discussed in Section III) controls have been
designed, the HTM has a behavioral component to model
system's response in different use cases and event sequences.
HTM is thus composed of five different views “Fig. 3”.
These views are named as relational, structural, trade,
hyperactivity and behavioral view and contain design
elements corresponding to their name. In the next section
(Section III) we will further discuss these views, specially
the hyperactivity view of the model.

ARCs is the computation independent top layer of HTM
[11] “Fig. 3”. The five views in the hyperactive transaction
model gives five different kinds of ARCs. The relational and
structural views are combined together as ARC; trade view
has a Trade-ARC (TARC); hyperactive view has a
Hyperactivity-ARC (HARC) and the behavioral view has
two kinds of ARCs, Use Case-ARC (UARC) and Sequence-
ARC (SARC).

543

Figure 4. Hyperactivity in a Multi Agent System.

III. HYPERACTIVITY

In this section we will discuss hyperactivity and all
associated terms that we frequently use in the hyperactive
transaction model, and Agent Relation Charts [11]. Software
agents are by definition software components representing
the base software in the network clouds. Agents are a
strongly connected component of the base software or
separate software running on the host machine. The base
software is connected to associated agents (other agents in
the network which are associated with the base software for
some common goal or service) through one or more kinds of
networks (hence the term network clouds is used to cover the
possibility of having more than one kind of networks in the
Multi Agent System.)

A. Passive Agents
Looking at the general structure of a software agent in

“Fig. 4” we can see the agent as having a control unit in
between the lines connecting the base software (and/or host
hardware) to other agents via the network clouds (one or
more different kinds of network e.g. an agent having a
wireless internet connection as well as an infrared
communication link). The control logic of the control unit
should be based on some fixed values (thresholds, limits or
any other values used in the branching logic of the control
unit), let us call those values collectively as control
parameters C[.](t) at any particular time t. Now if we have
an agent in which these control parameters are the same for
all instances of time, we call it a passive agent. Note that a
passive agent may still be a smart piece of software, but it
doesn’t has the “capacity” (or to be more precise
“necessity”) to learn and modify its control logic with time.
Looking at “Fig. 4”, a passive agent will just contain the
components painted white (Control Unit and Control
Parameters).

B. Active Agents and Activity
In previous section we saw that the control unit in a

passive agent is taking decisions based on the inputs it is
getting from its host (base software and host hardware) and
from associated agents. The decisions however are governed
by control parameters which are not changing with time. In
an active agent, these control parameters are updated
regularly to modify control unit’s working logic. To
implement this, the control unit could be storing its logs
(some or all inputs, outputs and current control parameters)
onto a storage device from where an update mechanism
reads some or all logs to generate the new control
parameters. In “Fig. 4” the components painted gold are the
implementation of activity in the agent. The update
mechanism could house any of the AI (Artificial
Intelligence) based learning algorithms, or any simpler piece
of code that learns from control unit’s history and updates
the control parameters. In essence, an active agent modifies
its behavior with time based on what it learned from the
history of events that took place during its runtime.

C. Hyperactive Agents and Hyperactivity
In previous section we saw that Activity is an internal

phenomenon which enables modification in an agent’s
working logic with time. Hyperactivity however is a
phenomenon at the Multi Agent System level where agents
are able to modify the working logics of its associated agents
based on their own history of events. Although associated
agents in a multi agent system do influence the behavior of
other agents by transfer of information through the passive
channel, but the novel idea here is in having a separate
mechanism for communicating what one agent learned from
its history of events, to the learning mechanism of another
agent.

In “Fig. 4” the components painted blue are the
implementation of hyperactivity in the multi agent system.
The hyperactivity mechanism in a hyperactive agent reads

544

Figure 6. Components of Hyperactive View.

Figure 5. An example of a HARC [11].

from the storage just like the update mechanism, but has a
different learning algorithm that generates the new
hyperactive outputs (Ho(t+1)) for the associated agent
(Agent B in “Fig. 4”). The hyperactive outputs from agent A
are the hyperactive inputs to the hyperactivity mechanism of
agent B. Similarly, the hyperactivity mechanism of agent C
sends hyperactive inputs to agent A, which are placed into
the storage with the hyperactive outputs that agent A
generated (The Blue components of the logs in the Storage
are the hyperactive components which are added by the
hyperactive mechanism just like the other logs are added by
the control unit “Fig. 4”).

The update mechanism in a hyperactive agent reads the
logs generated by both control unit (t, C, i, I, o and O) and by
the hyperactive mechanism (Hi and Ho) “Fig. 4” and thus the
updated control parameters are directly influenced by the
internal events as well as by the events happening elsewhere
in associated agents. The transfer of hyperactive updates
from one to another agent makes one hyperactive link and a
multi agent system with one or more hyperactive links is
called a hyperactive multi agent system. An agent needs to
be an active agent first (presence of an update mechanism) in
order to receive hyperactive inputs from other agents. In a
unique case, a passive agent could send hyperactive inputs to
other agents provided it has storage and hyperactivity
mechanism (and no update mechanism as it’s a passive
agent).

IV. THE HYPERACTIVITY VIEW

In section II we discussed the Hyperactive Transaction
Model and its first layer based on Agent Relation Charts
[11]. We have seen that the hyperactive transaction model
has hyperactivity view as one of its views which capture the
hyperactivity related design components in the model. In
agent relation charts, we have a Hyperactivity ARC (HARC)
in the hyperactivity view which is used to specify which of
the agents in the multi agent system are Active or
hyperactive. HARC also shows all hyperactive links in the
multi agent system and thus provides a top layer (ARCs are
in the topmost abstract layer of the Hyperactive Transaction
Model) description of the hyperactivity in the system. “Fig.
5” shows an example [11] of the HARC where system’s
hyperactive links are specified and the active agents carry a
blue star.

In lower layers of the Model (Under development), the
hyperactive view contains the hyperactive components of
Platform specific and Platform Independent design of
individual agents. It is achieved by having a hyperactivity
sub-view (RH, SH, TH and BH in “Fig. 6”) for all other
views (structural, relational, trade and behavioral views).
The hyperactive part of the relational, structural, trade and
behavioral logic is placed in these sub-views for both middle
layer platform independent design and for platform specific
base software design at lowest layer.

The communication of information generated by
individual agents based on their event history, to other agents
in the multi agent system is an important aspect of an
intelligent multi agent system. Thus, hyperactivity is an
important view (views are earlier discussed in “Sections I.D”
and “Section II”) for the model. This separation of
hyperactivity from other views is the key element of the
Hyperactive Transaction Model as it enables independent
handling and modeling on system hyperactivity.

V. DISCUSSION AND FUTURE WORK

In the present paper we first presented a background
introduction to software engineering for multi agent systems,
model based engineering and multi view modeling.
Hyperactive Transaction is a multi-view model for modeling
multi agent systems. Agent Relation charts are modeling
tools for the top layer of this model which has five views.
These views capture different aspects of the multi agent
system and provide a clear method to model them separately.
The hyperactivity view of this model is unique as is is based
on a new concept. In this paper we have tried to give an
introduction to this concept and explained the importance of
this view for the hyperactive transaction model. In future, the
lower layers of the model will define the platform
independent and platform specific layers of the model. The
authors believe that a multi-view approach with
hyperactivity as the base concept will enable system
designers and developers to model and implement

545

complicated systems with ease. The designs made in
Hyperactive Transaction Model will be easily translated into
UML, which is the most commonly used design description
language used in the industry. A number of case studies are
planned to justify the usability of the model and will provide
useful insight to further refine the model.

VI. ACKNOWLEDGMENT

The current research is being funded by the Laboratory
Le2i (CNRS 5158, Le-Creusot, FRANCE), Bourgogne
regional council (Regional French administration) and the
University Technology Petronas (Perak, Malaysia).

REFERENCES

[1] M. Luck, P. McBurney and C. Preist. “Agent Technology: Enabling
Next Generation Computing”, In A Roadmap for Agent-Based
Computing, ISBN: 0854327886, ver. 1.0. Southampton: AgentLink
2003.

[2] M. Luck, P. McBurne, O. Shehory and S. Willmott. “Agent
Technology: Computing as Interaction”, In A Roadmap for Agent
Based Computing, Compiled, written and edited by M. Luck, P.
McBurney, O. Shehory, S. Willmott and the AgentLink Community,
pp. 11-12, 2005.

[3] M. Wooldridge. “An Introduction to Multi-agent Systems”, Published
in February 2002 by John Wiley & Sons (Chichester, England),
ISBN: 0 47149691X, 2002.

[4] N. R. Jennings and S. Bussmann. “Agent-Based Control Systems.
Why Are They Suited to Engineering Complex Systems?”, In IEEE
Control Systems Magazine, vol. 23, no. 3, pp. 61-73, Jun. 2003.

[5] P. Stone and M. Veloso. “Multi-agent Systems: A Survey from a
Machine Learning Perspective”, In Autonomous Robots, vol. 8, no. 3,
pp. 345-383, July 2000.

[6] L. Panait and S. Luke. “Cooperative Multi-Agent Learning: The State
of the Art”, In Autonomous Agents and Multi-Agent Systems, Ed.
Springer-Verlag, vol. 11, no. 3, pp. 387-434, 2005.

[7] G. Weiss. “Multi-agent Systems: A Modern Approach to Distributed
Artificial Intelligence”, Edited by Gerard Weiss. ISBN: 0-262-23203-
0, 1999.

[8] Diego ALONSO, Cristina VICENTE-CHICOTE, Francisco ORTIZ,
Juan PASTOR, Bárbara ÁLVAREZ "V3CMM: a 3-View Component
Meta-Model for Model-Driven Robotic Software Development,"
Journal of Software Engineering for Robotics (JOSER), January
2010, 3-17.

[9] OMG, Model Driven Architecture Guide, version v1.0.1, omg/2003-
06-01, Jun. 2003. http://www.omg.org/docs/omg/03-06-01.pdf

[10] E. Seidewitz, “What models mean”, IEEE Softw., vol. 20, no. 5,
pp.26–32, 2003.

[11] V. Nagrath, F. Meriaudeau, A. Saeed Malik, and O. Morel, “Agent
Relation Charts (ARCs) for Modeling Cloud based transactions,” in
Proceedings of the International Conference on Communication
Systems and Network Technologies. Rajkot, India: Laboratoire Le2i,
UMR CNRS 5158, IUT, Le Creusot, FRANCE; University
Technology Petronas, Perak, MALAYSIA, 2012.

546

